Intel Xeon Phi上でのSMASHによる並列化DFT計算の性能評価

[1]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[2]  Mark S. Gordon,et al.  New Multithreaded Hybrid CPU/GPU Approach to Hartree-Fock. , 2012, Journal of chemical theory and computation.

[3]  A Eugene DePrince,et al.  Coupled Cluster Theory on Graphics Processing Units I. The Coupled Cluster Doubles Method. , 2011, Journal of chemical theory and computation.

[4]  Kazuya Ishimura,et al.  MPI/OpenMP Hybrid Parallel Algorithm for Hartree−Fock Calculations , 2010 .

[5]  E. Aprà,et al.  Implementation of High-Order Multireference Coupled-Cluster Methods on Intel Many Integrated Core Architecture. , 2016, Journal of chemical theory and computation.

[6]  Ivan S Ufimtsev,et al.  Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation. , 2008, Journal of chemical theory and computation.

[7]  Kenneth M Merz,et al.  Acceleration of Electron Repulsion Integral Evaluation on Graphics Processing Units via Use of Recurrence Relations. , 2013, Journal of chemical theory and computation.

[8]  Alán Aspuru-Guzik,et al.  Accelerating Correlated Quantum Chemistry Calculations Using Graphical Processing Units , 2010, Computing in Science & Engineering.

[9]  Masha Sosonkina,et al.  Energy-Efficient Computational Chemistry: Comparison of x86 and ARM Systems. , 2015, Journal of chemical theory and computation.

[10]  Christine M. Isborn,et al.  Excited-State Electronic Structure with Configuration Interaction Singles and Tamm–Dancoff Time-Dependent Density Functional Theory on Graphical Processing Units , 2011, Journal of chemical theory and computation.

[11]  James Reinders,et al.  Intel Xeon Phi Coprocessor High Performance Programming , 2013 .

[12]  Roland Lindh,et al.  Utilizing high performance computing for chemistry: parallel computational chemistry. , 2010, Physical chemistry chemical physics : PCCP.

[13]  Kaori Fukuzawa,et al.  Large-scale FMO-MP3 calculations on the surface proteins of influenza virus, hemagglutinin (HA) and neuraminidase (NA) , 2010 .

[14]  Yuji Mochizuki,et al.  Acceleration of fragment molecular orbital calculations with Cholesky decomposition approach , 2010 .

[15]  Sriram Krishnamoorthy,et al.  GPU-Based Implementations of the Noniterative Regularized-CCSD(T) Corrections: Applications to Strongly Correlated Systems. , 2011, Journal of chemical theory and computation.

[16]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[17]  Koji Yasuda,et al.  Two‐electron integral evaluation on the graphics processor unit , 2008, J. Comput. Chem..

[18]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[19]  Heather J Kulik,et al.  Ab initio quantum chemistry for protein structures. , 2012, The journal of physical chemistry. B.

[20]  Avinash Sodani,et al.  Intel Xeon Phi Processor High Performance Programming: Knights Landing Edition 2nd Edition , 2016 .

[21]  Yuto Komeiji,et al.  Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. , 2014, Physical chemistry chemical physics : PCCP.