Eavesdropping on the `ping-pong' quantum communication protocol freely in a noise channel

We introduce an attack scheme for eavesdropping freely the ping-pong quantum communication protocol proposed by Bostrom and Felbinger [Phys. Rev. Lett. 89, 187902 (2002)] in a noise channel. The vicious eavesdropper, Eve, intercepts and measures the travel photon transmitted between the sender and the receiver. Then she replaces the quantum signal with a multi-photon signal in the same state, and measures the returned photons with the measuring basis, with which Eve prepares the fake signal except for one photon. This attack increases neither the quantum channel losses nor the error rate in the sampling instances for eavesdropping check. It works for eavesdropping the secret message transmitted with the ping-pong protocol. Finally, we propose a way for improving the security of the ping-pong protocol.

[1]  Fuguo Deng,et al.  Improving the security of multiparty quantum secret sharing against Trojan horse attack , 2005, quant-ph/0506194.

[2]  Chuan Wang,et al.  Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state , 2005 .

[3]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[4]  Xiao Li,et al.  Increasing the Efficiencies of Random-Choice-Based Quantum Communication Protocols with Delayed Measurement , 2004 .

[5]  Zhi-Xi Wang,et al.  Deterministic secure direct communication using GHZ states and swapping quantum entanglement , 2004, quant-ph/0406082.

[6]  Zhan-jun Zhang,et al.  The improved Bostrom-Felbinger protocol against attacks without eavesdropping , 2004 .

[7]  F. L. Yan,et al.  A scheme for secure direct communication using EPR pairs and teleportation , 2004 .

[8]  Zhou Hong-Yu,et al.  Multiparty Quantum Secret Report , 2006 .

[9]  Fuguo Deng,et al.  Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement , 2005, quant-ph/0501129.

[10]  G. Long,et al.  Controlled order rearrangement encryption for quantum key distribution , 2003, quant-ph/0308172.

[11]  Antoni Wójcik Eavesdropping on the "ping-pong" quantum communication protocol. , 2003, Physical review letters.

[12]  Yang Jie,et al.  Multi-agent controlled teleportation of multi-qubit quantum information via two-step protocol , 2005 .

[13]  Zhou Ping,et al.  Quantum Secure Direct Communication Network with Two-Step Protocol , 2006 .

[14]  Cai Qing-yu,et al.  Deterministic secure communication without using entanglement , 2004 .

[15]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[16]  杨四刚,et al.  Effect of structure random disturbances on characterizations of microstructured optical fibres , 2005 .

[17]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[18]  Cao Hai-Jing,et al.  Quantum Secure Direct Communication with W State , 2006 .

[19]  Long Gui-Lu,et al.  Quantum Privacy Amplification for a Sequence of Single Qubits , 2006 .

[20]  Zhan-jun Zhang,et al.  Improved Wójcik's eavesdropping attack on ping-pong protocol without eavesdropping-induced channel loss , 2004, quant-ph/0411030.

[21]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[22]  Hoi-Kwong Lo,et al.  Efficient Quantum Key Distribution Scheme and a Proof of Its Unconditional Security , 2004, Journal of Cryptology.

[23]  Fuguo Deng,et al.  Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs (4 pages) , 2005, quant-ph/0504158.

[24]  Ping Zhou,et al.  Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements , 2006 .

[25]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[26]  Marco Lucamarini,et al.  Secure deterministic communication without entanglement. , 2005, Physical review letters.

[27]  Harald Weinfurter,et al.  Secure Communication with a Publicly Known Key , 2001 .

[28]  Zeng Guihua,et al.  Deterministic quantum key distribution based on Gaussian-modulated EPR correlations , 2006 .

[29]  Ping Zhou,et al.  Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state , 2005, quant-ph/0511223.

[30]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[31]  Qing-yu Cai,et al.  Improving the capacity of the Boström-Felbinger protocol , 2003, quant-ph/0311168.

[32]  Shou Zhang,et al.  Secure direct communication based on secret transmitting order of particles , 2006, quant-ph/0601119.

[33]  Zhi-Xi Wang,et al.  Quantum secure direct communication by Einstein-Podolsky-Rosen pairs and entanglement swapping , 2004, quant-ph/0406083.

[34]  Zhang Zhan-jun,et al.  Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations , 2005 .

[35]  Fuguo Deng,et al.  Bidirectional quantum key distribution protocol with practical faint laser pulses , 2004 .

[36]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[37]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[38]  Zhang Zhan-jun,et al.  Quantum dialogue revisited , 2005 .

[39]  Yan Feng-Li,et al.  Controlled quantum teleportation and secure direct communication , 2005 .

[40]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[41]  Zhan-jun Zhang,et al.  Improving Wojcik's eavesdropping attack on the ping-pong protocol , 2004 .

[42]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[43]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[44]  Qing-yu Cai,et al.  The "ping-pong" protocol can be attacked without eavesdropping. , 2003, Physical review letters.