Reconstruction of solid oxide fuel cell electrode microstructure and analysis of its effective conductivity

[1]  A. Bertei,et al.  Percolation theory in SOFC composite electrodes: Effects of porosity and particle size distribution , 2011 .

[2]  Meng Ni,et al.  Geometric Properties of Nanostructured Solid Oxide Fuel Cell Electrodes , 2013 .

[3]  Jiayu Li,et al.  Percolation micro-model to predict the effective properties of the composite electrode with poly-dis , 2011 .

[4]  Cristiano Nicolella,et al.  Percolating behavior of sintered random packings of spheres , 2012 .

[5]  Jon G. Pharoah,et al.  Effective transport properties of the porous electrodes in solid oxide fuel cells , 2011 .

[6]  M. Ni,et al.  Investigation of the electrochemical active thickness of solid oxide fuel cell anode , 2014 .

[7]  San Ping Jiang,et al.  Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges , 2012 .

[8]  Q. Cai,et al.  Modelling the 3D microstructure and performance of solid oxide fuel cell electrodes: Computational parameters , 2011 .

[9]  Ji Haeng Yu,et al.  Microstructural effects on the electrical and mechanical properties of Ni-YSZ cermet for SOFC anode , 2007 .

[10]  Nigel P. Brandon,et al.  Towards the 3D modeling of the effective conductivity of solid oxide fuel cell electrodes: I. Model development , 2013 .

[11]  F. Chen,et al.  Tortuosity Factor of Three-Dimensional Infiltrate Network , 2014 .

[12]  A. Bertei,et al.  A comparative study and an extended theory of percolation for random packings of rigid spheres , 2011 .

[13]  M. Ni,et al.  A Sintering Kinetics Model for Ceramic Dual‐Phase Composite , 2014 .

[14]  Norma E. Conner,et al.  Advances and Challenges , 2016, The American journal of hospice & palliative care.

[15]  C. Xia,et al.  Film percolation for composite electrodes of solid oxide fuel cells , 2011 .

[16]  Q. Cai,et al.  Towards the 3D modeling of the effective conductivity of solid oxide fuel cell electrodes – II. Computational parameters , 2014 .

[17]  L. D. Jonghe,et al.  Ionic conductivity of stabilized zirconia networks in composite SOFC electrodes , 2004 .

[18]  D. Jeon,et al.  A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells , 2006 .

[19]  P. Pommier,et al.  3D Microstructural characterization of a solid oxide fuel cell anode reconstructed by focused ion be , 2011 .

[20]  Jon G. Pharoah,et al.  Computation of TPB length, surface area and pore size from numerical reconstruction of composite solid oxide fuel cell electrodes , 2009 .

[21]  Q. Cai,et al.  Towards the 3D Modelling of the Effective Conductivity of Solid Oxide Fuel Cell Electrodes - Validation against experimental measurements and prediction of electrochemical performance , 2015 .

[22]  S. Jiang,et al.  A review of wet impregnation—An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells , 2006 .

[23]  A. Bertei,et al.  Microstructural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes , 2013 .

[24]  F. Lange,et al.  Relation between percolation and particle coordination in binary powder mixtures , 1991 .

[25]  A. Virkar,et al.  Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters , 2005 .

[26]  Hiroshi Iwai,et al.  Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique , 2010 .

[27]  M. Ni,et al.  Simulation of sintering kinetics and microstructure evolution of composite solid oxide fuel cells electrodes , 2012 .

[28]  M. Ni,et al.  On the tortuosity factor of solid phase in solid oxide fuel cell electrodes , 2015 .

[29]  Bengt Sundén,et al.  SOFC modeling considering electrochemical reactions at the active three phase boundaries , 2012 .

[30]  S. Bonnamy,et al.  Effect of Ni content in SOFC Ni-YSZ cermets: A three-dimensional study by FIB-SEM tomography , 2011 .

[31]  E. Wachsman,et al.  Lowering the Temperature of Solid Oxide Fuel Cells , 2011, Science.

[32]  Robert J. Kee,et al.  Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes , 2009 .

[33]  Robert J. Kee,et al.  A particle-based model for predicting the effective conductivities of composite electrodes , 2010 .

[34]  Toshio Oshima,et al.  Estimation of the Co-ordination number in a Multi-Component Mixture of Spheres , 1983 .