Organic–Inorganic Halide Perovskites: Perspectives for Silicon-Based Tandem Solar Cells

We investigate the efficiency potential of organic-inorganic halide perovskite/crystalline silicon tandem solar cells, a new class of photovoltaic devices targeting long-term cost reductions by ultrahigh conversion efficiencies. Methyl ammonium lead triiodide perovskite solar cells are particularly interesting as the top cell in Si-based tandem devices due to their suitable band gap, high photovoltage, and low sub-bandgap absorption. We derive optical models for a perovskite/Si tandem cell with Lambertian light trapping in the perovskite top cell, as well as for a top cell in the single pass limit. We find that unlike for other thin-film device architectures, light trapping is not required for the triiodide perovskite/Si tandem to reach matched top and bottom cell currents. While a Lambertian top cell could be employed in a four-terminal tandem, a top cell in the single pass limit enables a current-matched monolithic device with realistic top cell thicknesses. We calculate a limiting efficiency of 35.67% for an ideal (no parasitic absorption, ideal contacts) monolithic tandem, assuming a top cell open-circuit voltage of 1100 mV.

[1]  Yossi Rosenwaks,et al.  Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). , 2014, Nano letters.

[2]  Eli Yablonovitch,et al.  Optically enhanced amorphous silicon solar cells , 1983 .

[3]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[4]  R. M. Swanson,et al.  Approaching the 29% limit efficiency of silicon solar cells , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[5]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[6]  C. Ballif,et al.  Record Infrared Internal Quantum Efficiency in Silicon Heterojunction Solar Cells With Dielectric/Metal Rear Reflectors , 2013, IEEE Journal of Photovoltaics.

[7]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[8]  Martin A. Green,et al.  Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients , 2008 .

[9]  Gary Hodes,et al.  Perovskite-Based Solar Cells , 2013, Science.

[10]  J. Springer,et al.  TCO and light trapping in silicon thin film solar cells , 2004 .

[11]  S. Glunz,et al.  Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells , 2013, IEEE Journal of Photovoltaics.

[12]  C. Battaglia,et al.  Light trapping in solar cells: Analytical modeling , 2012 .

[13]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[14]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[15]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.

[16]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[17]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[18]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[19]  J. Teuscher,et al.  Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells , 2014, Nature Photonics.

[20]  K. Catchpole,et al.  Tandem Solar Cells Based on High-Efficiency c-Si Bottom Cells: Top Cell Requirements for >30% Efficiency , 2014, IEEE Journal of Photovoltaics.

[21]  Martin A. Green,et al.  Accuracy of analytical expressions for solar cell fill factors , 1982 .

[22]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[23]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[24]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[25]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[26]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[27]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[28]  M. Johnston,et al.  Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3-xClx , 2014 .

[29]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.