Preference learning with Gaussian processes

In this paper, we propose a probabilistic kernel approach to preference learning based on Gaussian processes. A new likelihood function is proposed to capture the preference relations in the Bayesian framework. The generalized formulation is also applicable to tackle many multiclass problems. The overall approach has the advantages of Bayesian methods for model selection and probabilistic prediction. Experimental results compared against the constraint classification approach on several benchmark datasets verify the usefulness of this algorithm.

[1]  Chris Buckley,et al.  OHSUMED: an interactive retrieval evaluation and new large test collection for research , 1994, SIGIR '94.

[2]  Carl E. Rasmussen,et al.  In Advances in Neural Information Processing Systems , 2011 .

[3]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[4]  David J. C. MacKay,et al.  Bayesian Methods for Backpropagation Networks , 1996 .

[5]  K. Obermayer,et al.  Learning Preference Relations for Information Retrieval , 1998 .

[6]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[7]  David Barber,et al.  Bayesian Classification With Gaussian Processes , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Seth Rogers,et al.  Learning Subjective Functions with Large Margins , 2000, ICML.

[9]  Lehel Csató,et al.  Sparse On-Line Gaussian Processes , 2002, Neural Computation.

[10]  Dan Roth,et al.  Constraint Classification: A New Approach to Multiclass Classification , 2002, ALT.

[11]  Neil D. Lawrence,et al.  Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.

[12]  Chih-Jen Lin,et al.  Probability Estimates for Multi-class Classification by Pairwise Coupling , 2003, J. Mach. Learn. Res..

[13]  Eyke Hüllermeier,et al.  Pairwise Preference Learning and Ranking , 2003, ECML.

[14]  Yoram Singer,et al.  Log-Linear Models for Label Ranking , 2003, NIPS.

[15]  Klaus Brinker,et al.  Active learning of label ranking functions , 2004, ICML.

[16]  Jon Doyle,et al.  Prospects for Preferences , 2004, Comput. Intell..

[17]  José Ramón Quevedo,et al.  Feature subset selection for learning preferences: a case study , 2004, ICML.

[18]  Alessandro Sperduti,et al.  Learning Preferences for Multiclass Problems , 2004, NIPS.

[19]  Wei Chu,et al.  Gaussian Processes for Ordinal Regression , 2005, J. Mach. Learn. Res..