Estuarine Vegetated Habitats as Corridors for Predator Movements

: The spatial proximity of one habitat to another can strongly influence population and community dynamics. We investigated whether the proximity of intertidal oyster reefs to vegetated estuarine habitats, salt marshes, and seagrass beds, affects the abundance and community structure of benthic macroinvertebrates on reefs and predator-prey interactions between mobile predators and bivalves living on reefs. Benthic macroinvertebrate abundance was highest on reefs spatially separated from salt marshes. Macroinvertebrate species richness was highest on reefs separated from both salt marshes and seagrass beds. Comparisons of predation on juvenile bivalves transplanted to reefs for 7–12 days indicated that survivorship of clams was greatest on reefs spatially separated from both salt marshes and seagrass beds, whereas reef proximity to vegetated habitats did not affect the survivorship of oysters. The foraging behavior of blue crabs may explain patterns of macroinvertebrate abundance and clam survivorship among reefs with different proximity to vegetated habitats. In experiments conducted in 30-m2 field enclosures, blue crabs had higher predation rates on hard clams transplanted onto artificial reefs adjacent to salt marshes or seagrass beds than on reefs separated from both habitats by unvegetated sand bottom. Thus, vegetated habitats appeared to act as corridors by facilitating the access of blue crabs to oyster reefs and enhancing the intensity of blue crab predation. Such an understanding of the effects of landscape characteristics of estuarine habitats on their value as habitats for estuarine organisms can be used to predict the consequences of habitat fragmentation on ecosystem function and to improve strategies for habitat and species conservation and restoration. Resumen: La proximidad espacial de un habitat con otro puede influenciar fuertemente las dinamicas poblacionales y de comunidades. Investigamos si la proximidad de arrecifes intermareas de ostiones con respecto a habitats estuarinos con vegetacion, cienegas y pastizales marinos afecta la abundancia y la estructura comunitaria de macroinvertebrados benticos en los arrecifes y las interacciones depredador-presa entre depredadores mobiles y bivalbos que habitan los arrecifes. La abundancia de macroinvertebrados benticos fue mayor en arrecifes espacialmente separados de las cienegas. La riqueza de especies de macroinvertebrados fue mayor en arrecifes separados tanto de las cienegas como de los pastizales marinos. Las comparaciones de depredacion sobre bivalbos juveniles transplantados a los arrecifes por 7–12 dias, indican que la supervivencia de almejas fue mayor en arrecifes espacialmente separados tanto de los cienegas, como de las camas de pastos marinos, mientras que los arrecifes cercanos a habitats con vegetacion no afecto la supervivencia de ostiones. La conducta de forrajeo de el cangrejo azul podria explicar los patrones de abundancia de macroinvertebrados y la supervivencia de almejas entre arrecifes con diferente cercania a los habitats con vegetacion. En experimentos conducidos en encierros de campo de 30 m2, los cangrejos azules tuvieron la tasa de depredacion mas alta en almejas transplantadas hacia arrecefes adyacentes a cienegas o pastos marinos que en los arrecifes separados de ambios tipos de vegetacion por fondos arenosos. Por lo tanto, los habitats con vegetacion aparentemente actuan como corredores facilitando el acceso de los cangrejos azules a los arrecifes de ostiones e incrementando la intensidad depredadora del cangrejo azul. El entendimiento de los efectos sobre las caracteristicas del paisaje en habitats estuarinos y sobre el valor de los habitats para los organismos estuarinos puede ser utilizado para predecir las consecuencias de la fragmentacion del habitat en la funcion del ecosistema y para mejorar estrategias para la conservacion y restauracion de habitats y especies.

[1]  J. Castilla,et al.  The management of fisheries and marine ecosystems , 1997 .

[2]  Myra J. Shulman Recruitment of Coral Reef Fishes: Effects of Distribution of Predators and Shelter , 1985 .

[3]  M. Luther,et al.  Flow hydrodynamics in tidal marsh canopies , 1995 .

[4]  A. Hines,et al.  Guild structure and foraging impact of blue crabs and epibenthic fish in a subestuary of Chesapeake Bay , 1990 .

[5]  E. Irlandi,et al.  Habitat linkages: the effect of intertidal saltmarshes and adjacent subtidal habitats on abundance, movement, and growth of an estuarine fish , 1997, Oecologia.

[6]  R. Zingmark,et al.  Oyster reefs as processors of estuarine materials , 1984 .

[7]  Robert W. Virnstein,et al.  The Importance of Predation by Crabs and Fishes on Benthic Infauna in Chesapeake Bay , 1977 .

[8]  F. Micheli EFFECTS OF PREDATOR FORAGING BEHAVIOR ON PATTERNS OF PREY MORTALITY IN MARINE SOFT BOTTOMS , 1997 .

[9]  J. Sutherland,et al.  Recruitment and growth of the Eastern oyster, Crassostrea virginica, in North Carolina , 1992 .

[10]  C. Peterson On the Role of Ecological Experimentation in Resource Management: Managing Fisheries Through Mechanistic Understanding of Predator Feeding Behaviour , 1990 .

[11]  C. Peterson,et al.  Replenishment of hard clam stocks using hatchery seed: Combined importance of bottom type, seed size, planting season, and density , 1995 .

[12]  R. Ginsburg,et al.  The Influence of Marine bottom Communities on the Depositional Environment of Sediments , 1958, The Journal of Geology.

[13]  H. Lenihan PHYSICAL-BIOLOGICAL COUPLING ON OYSTER REEFS: HOW HABITAT STRUCTURE INFLUENCES INDIVIDUAL PERFORMANCE , 1999 .

[14]  Db Eggleson Foraging Behavior Of The Blue-Crab, Callinectes-Sapidus, On Juvenile Oysters, Crassostrea-virginica - Effects Of Prey Density And Size , 1990 .

[15]  T. P. Scoffin,et al.  The Trapping and Binding of Subtidal Carbonate Sediments by Marine Vegetation in Bimini Lagoon, Bahamas , 1970 .

[16]  Robert W. Day,et al.  Comparisons of Treatments After an Analysis of Variance in Ecology , 1989 .

[17]  J C Ogden,et al.  Grazing by the Echinoid Diadema antillarum Philippi: Formation of Halos around West Indian Patch Reefs , 1973, Science.

[18]  S. Bell,et al.  Seagrass landscapes: a terrestrial approach to the marine subtidal environment. , 1994, Trends in ecology & evolution.

[19]  F. Micheli Effects of experience on crab foraging in a mobile and a sedentary species , 1997, Animal Behaviour.

[20]  C. Peterson,et al.  Role of predation in organizing benthic communities of a temperate-zone seagrass bed , 1984 .

[21]  M. Turner,et al.  LANDSCAPE ECOLOGY : The Effect of Pattern on Process 1 , 2002 .

[22]  Margaret A. Palmer,et al.  Larval distributions and the spatial patterns of settlement of an oyster reef fish: responses to flow and structure , 1995 .

[23]  James H. Brown,et al.  The Report of the Ecological Society of America Committee on the Scientific Basis for Ecosystem Management , 1996 .

[24]  James A. Cox,et al.  Movement Corridors: Conservation Bargains or Poor Investments? , 1992 .

[25]  T. P. Scoffin,et al.  A conglomeratic beachrock in Bimini, Bahamas , 1970 .

[26]  R. L. Harrison Toward a Theory of Inter-Refuge Corridor Design , 1992 .

[27]  D. Eggleston,et al.  Density-dependent predation by blue crabs upon infaunal clam species with contrasting distribution and abundance patterns , 1992 .

[28]  Daniel Simberloff,et al.  The Contribution of Population and Community Biology to Conservation Science , 1988 .

[29]  R. Hobbs The role of corridors in conservation: Solution or bandwagon? , 1992, Trends in ecology & evolution.

[30]  D. Hedgecock Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates , 1986 .

[31]  H. Lenihan,et al.  HOW HABITAT DEGRADATION THROUGH FISHERY DISTURBANCE ENHANCES IMPACTS OF HYPOXIA ON OYSTER REEFS , 1998 .

[32]  F. Micheli Predation intensity in estuarine soft bottoms: between-habitat comparisons and experimental artifacts , 1996 .

[33]  R. Mann,et al.  Benthic Filter Feeding: A Natural Eutrophication Control , 1982 .

[34]  P. Lawton,et al.  Portunid crab predation on juvenile hard clams: effects of substrate type and prey density , 1990 .

[35]  S. Palumbi Marine speciation on a small planet. , 1992, Trends in Ecology & Evolution.

[36]  W. S. Arnold The effects of prey size, predator size, and sediment composition on the rate of predation of the blue crab, Callinectes Sapidus Rathbun, on the hard clam, MercenariaMercenaria (Linné) , 1984 .

[37]  James R Bence,et al.  Detecting the Ecological Effects of Environmental Impacts: A Case Study of Kelp Forest Invertebrates. , 1993, Ecological applications : a publication of the Ecological Society of America.

[38]  M. Posey,et al.  Effects of proximity to an offshore hard-bottom reef on infaunal abundances , 1994 .

[39]  D. Eggleston,et al.  Organism response to habitat patchiness: species and habitat-dependent recruitment of decapod crustaceans , 1998 .

[40]  C. Peterson,et al.  Bivalve Growth and Higher Order Interactions: Importance of Density, Site, and Time , 1989 .