Unidirectional rotary motion in a liquid crystalline environment: Color tuning by a molecular motor

Life could not exist without motion induced by a variety of molecular motors. The construction of artificial motors by chemical synthesis, which can power motions that lead to macroscopic detectable effects in a system, is a major endeavor in contemporary science. To move toward this goal, a host–guest system, composed of a nematic liquid crystal film doped with a chiral light-driven molecular motor, is assembled. Irradiation of the film results in unidirectional rotary motion of the molecular motor, which induces a motion of the mesogenic molecules leading to a molecular reorganization and, as a consequence, a change in the color of the film. In this way, by control of the rotary motion at the molecular level, color tuning over the entire visible spectrum is achieved. These findings demonstrate that a molecular motor can exert a visually observable macroscopic change in a material.

[1]  G. Heppke,et al.  Determination of the Cholesteric Screw Sense , 1978 .

[2]  N. Tamaoki,et al.  Rewritable Full‐Color Recording in a Photon Mode , 2000 .

[3]  Nobuyuki Tamaoki,et al.  Cholesteric Liquid Crystals for Color Information Technology , 2001 .

[4]  Ben L. Feringa,et al.  Chemistry of Unique Chiral Olefins. 4. Theoretical Studies of the Racemization Mechanism of trans- and cis-1,1',2,2',3,3',4,4'-Octahydro-4,4'-biphenanthrylidenes. , 1999, The Journal of organic chemistry.

[5]  Ben L. Feringa,et al.  Chiroptical Molecular Switches. , 2000, Chemical reviews.

[6]  Akira Saito,et al.  Chemistry of Unique Chiral Olefins. 2. Unexpected Thermal Racemization of cis-1,1‘,2,2‘,3,3‘,4,4‘-Octahydro-4,4‘- biphenanthrylidene , 1997 .

[7]  Yasushi Yokoyama,et al.  Reversible Control of the Pitch of Cholesteric Liquid Crystals by Photochromism of Chiral Fulgide Derivatives , 2000 .

[8]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[9]  Kunihiro Ichimura,et al.  Photoalignment of Liquid-Crystal Systems. , 2000, Chemical reviews.

[10]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[11]  T. Ross Kelly,et al.  In Search of Molecular Ratchets , 1997 .

[12]  D. J. Broer,et al.  Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient , 1995, Nature.

[13]  J. Malthête,et al.  Détermination des sens de Torsion Absolus de Phases Cholestériques et Smectiques C Chirales , 1976 .

[14]  Jean-Pierre Sauvage,et al.  Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .

[15]  Richard A. Silva,et al.  Unidirectional rotary motion in a molecular system , 1999, Nature.

[16]  N. Harada,et al.  Chemistry Of Unique Chiral Olefins. 1. Synthesis, Enantioresolution, Circular Dichroism, And Theoretical Determination Of The Absolute Stereochemistry Of Trans- And Cis-1,1',2,2',3,3',4,4'-octahydro-4,4'-biphenanthrylidenes , 1997 .

[17]  B. Feringa,et al.  CHIROPTICAL SWITCHING BETWEEN LIQUID CRYSTALLINE PHASES , 1995 .

[18]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[19]  Ben L. Feringa,et al.  Dynamic Control and Amplification of Molecular Chirality by Circular Polarized Light , 1996, Science.

[20]  N. Harada,et al.  Chemistry of Unique Chiral Olefins. 3. Synthesis and Absolute Stereochemistry of trans- and cis-1,1‘,2,2‘,3,3‘,4,4‘- Octahydro-3,3‘-dimethyl-4,4‘-biphenanthrylidenes , 1997 .

[21]  Ben L. Feringa,et al.  Light-Driven Molecular Rotor: Unidirectional Rotation Controlled by a Single Stereogenic Center , 2000 .

[22]  J Fraser Stoddart,et al.  Working Supramolecular Machines Trapped in Glass and Mounted on a Film Surface. , 2001, Angewandte Chemie.

[23]  G. Solladié,et al.  Liquid Crystals: A Tool for Studies on Chirality , 1984 .