A new multidimensional Schur-Cohn type stability criterion

In this paper a new multidimensional BIBO stability algorithm is proposed. The algorithm is based on a necessary and sufficient condition for BIBO stability of n-dimensional filters. The criterion involves the use of the functional Schur coefficients, recently introduced by the authors. This new criterion only needs a unique condition to be checked, as an alternative to the set of N - 1 conditions of the Jury-Anderson or DeCarlo Strintzis stability test. A new procedure involving the Modified Multidimensional Jury Table for testing this criterion is proposed. The procedure is illustrated by a two-dimensional example.

[1]  Brian D. O. Anderson,et al.  Stability test for two-dimensional recursive filters , 1973 .

[2]  Bogdan Dumitrescu,et al.  Stability test of multidimensional discrete-time systems via sum-of-squares decomposition , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Mohamed Najim,et al.  Schur coefficients in several variables , 2006 .

[4]  Thomas S. Huang,et al.  Stability of two-dimensional recursive filters , 1972 .

[5]  Brian D. O. Anderson,et al.  Stability of multidimensional digital filters , 1974 .

[6]  W. Rogosinski,et al.  The Geometry of the Zeros of a Polynomial in a Complex Variable , 1950, The Mathematical Gazette.

[7]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[8]  Olivier Alata,et al.  Extension of the Schur-Cohn stability test for 2-D AR quarter-plane model , 2003, IEEE Trans. Inf. Theory.

[9]  N. Bose Applied multidimensional systems theory , 1982 .

[10]  Mohamed Najim,et al.  A two-dimensional fast lattice recursive least squares algorithm , 1996, IEEE Trans. Signal Process..

[11]  Michael G. Strintzis,et al.  Tests of stability of multidimensional filters , 1977 .

[12]  Peter H. Bauer,et al.  BIBO stability of multidimensional (mD) shift-invariant discrete systems , 1991 .

[13]  Xiheng Hu,et al.  Stability tests of N-dimensional discrete time systems using polynomial arrays , 1995 .

[14]  E. I. Jury,et al.  Modified stability table for 2-D digital filters , 1988 .

[15]  Hugo J. Woerdeman,et al.  Two-variable polynomials: intersecting zeros and stability , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  T. Constantinescu,et al.  Schur's Algorithm and Several Applications , 1992 .

[17]  D. Siljak Stability criteria for two-variable polynomials , 1975 .