Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium

We present detailed comparisons of the intracluster medium (ICM) in cosmological Eulerian cluster simulations with deep Chandra observations of nearby relaxed clusters. To assess the impact of galaxy formation, we compare two sets of simulations, one performed in the nonradiative regime and another with radiative cooling and several physical processes critical to various aspects of galaxy formation: star formation, metal enrichment, and stellar feedback. We show that the observed ICM properties outside cluster cores are well reproduced in the simulations that include cooling and star formation, while the nonradiative simulations predict an overall shape of the ICM profiles inconsistent with observations. In particular, we find that the ICM entropy in our runs with cooling is enhanced to the observed levels at radii as large as half of the virial radius. We also find that outside cluster cores entropy scaling with the mean ICM temperature in both simulations and Chandra observations is consistent with being self-similar within current error bars. We find that the pressure profiles of simulated clusters are also close to self-similar and exhibit little cluster-to-cluster scatter. We provide analytic fitting formulae for the pressure profiles of the simulated and observed clusters. The X-ray observable mass relations for our simulated sample agree with the Chandra measurements to ≈10%-20% in normalization. We show that this systematic difference could be caused by the subsonic gas motions, unaccounted for in X-ray hydrostatic mass estimates. The much improved agreement of simulations and observations in the ICM profiles and scaling relations is encouraging, and the existence of tight relations of X-ray observables, such as YX, and total cluster mass and the simple redshift evolution of these relations hold promise for the use of clusters as cosmological probes. However, the disagreement between the predicted and observed fractions of cluster baryons in stars remains a major puzzle.

[1]  M. Seigar,et al.  Intracluster light and the extended stellar envelopes of cD galaxies: an analytical description , 2006, astro-ph/0612229.

[2]  R. Teyssier,et al.  AGN self-regulation in cooling flow clusters , 2006, astro-ph/0611914.

[3]  A. Finoguenov,et al.  XMM-Newton study of 0.012 < z < 0.024 groups - I. Overview of the IGM thermodynamics , 2006, astro-ph/0611846.

[4]  N. Aghanim,et al.  The evolution of clusters in the CLEF cosmological simulation: X‐ray structural and scaling properties , 2006, astro-ph/0611017.

[5]  T. Ensslin,et al.  Simulating cosmic rays in clusters of galaxies – I. Effects on the Sunyaev–Zel'dovich effect and the X-ray emission , 2006, astro-ph/0611037.

[6]  D. Nagai,et al.  Testing X-Ray Measurements of Galaxy Clusters with Cosmological Simulations , 2006, astro-ph/0609247.

[7]  Tod R. Lauer,et al.  The Masses of Nuclear Black Holes in Luminous Elliptical Galaxies and Implications for the Space Density of the Most Massive Black Holes , 2006, astro-ph/0606739.

[8]  R. Bower,et al.  Revisiting the baryon fractions of galaxy clusters: a comparison with WMAP 3-yr results , 2006, astro-ph/0609314.

[9]  D. Clowe,et al.  A Direct Empirical Proof of the Existence of Dark Matter , 2006, astro-ph/0608407.

[10]  K. Dolag,et al.  Turbulent velocity fields in smoothed particle hydrodymanics simulated galaxy clusters: scaling laws for the turbulent energy , 2006 .

[11]  K. Dawson,et al.  X-Ray and Sunyaev-Zel’dovich Effect Measurements of the Gas Mass Fraction in Galaxy Clusters , 2006, astro-ph/0604039.

[12]  D. Nagai,et al.  A New Robust Low-Scatter X-Ray Mass Indicator for Clusters of Galaxies , 2006, astro-ph/0603205.

[13]  L. Moscardini,et al.  Systematics in the X-ray cluster mass estimators , 2006, astro-ph/0602434.

[14]  K. Dolag,et al.  Turbulent Velocity Fields in SPH--simulated Galaxy Clusters , 2006, astro-ph/0602247.

[15]  Astrophysics,et al.  Structure and scaling of the entropy in nearby galaxy clusters , 2005, astro-ph/0508234.

[16]  L. Moscardini,et al.  Hot and cooled baryons in smoothed particle hydrodynamic simulations of galaxy clusters: physics and numerics , 2005, astro-ph/0512506.

[17]  D. Nagai,et al.  The Impact of Galaxy Formation on the Sunyaev-Zel'dovich Effect of Galaxy Clusters , 2005, astro-ph/0512208.

[18]  G. Bryan,et al.  Structure Formation , 2005 .

[19]  Garching,et al.  Hydrodynamical simulations of cluster formation with central AGN heating , 2005, astro-ph/0509506.

[20]  K. Dolag,et al.  Turbulent gas motions in galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity , 2005, astro-ph/0507480.

[21]  C. Jones,et al.  ERRATUM: “CHANDRA SAMPLE OF NEARBY RELAXED GALAXY CLUSTERS: MASS, GAS FRACTION, AND MASS–TEMPERATURE RELATION” (2006, ApJ, 640, 691) , 2005, astro-ph/0507092.

[22]  A. Vikhlinin Predicting a Single-Temperature Fit to Multicomponent Thermal Plasma Spectra , 2005, astro-ph/0504098.

[23]  H Germany,et al.  The structural and scaling properties of nearby galaxy clusters. II. The M-T relation , 2005, astro-ph/0502210.

[24]  M. Arnaud,et al.  The structural and scaling properties of nearby galaxy clusters. I. The universal mass profile , 2005, astro-ph/0501635.

[25]  D. Nagai,et al.  Effects of Cooling and Star Formation on the Baryon Fractions in Clusters , 2005, astro-ph/0501227.

[26]  M. Brüggen,et al.  Active Galactic Nuclei Heating and Dissipative Processes in Galaxy Clusters , 2005, astro-ph/0501175.

[27]  G. Voit Tracing cosmic evolution with clusters of galaxies , 2004, astro-ph/0410173.

[28]  D. Zaritsky,et al.  Intracluster Light in Nearby Galaxy Clusters: Relationship to the Halos of Brightest Cluster Galaxies , 2004, astro-ph/0406244.

[29]  M. Markevitch,et al.  Chandra Temperature Profiles for a Sample of Nearby Relaxed Galaxy Clusters , 2004, astro-ph/0412306.

[30]  C. Baugh,et al.  Where are the stars , 2004, astro-ph/0412049.

[31]  Potsdam,et al.  Supersonic motions of galaxies in clusters , 2004, astro-ph/0408488.

[32]  F. Pearce,et al.  Cosmological simulations of the intracluster medium , 2004, astro-ph/0407058.

[33]  L. Moscardini,et al.  Evolution at z 0.5 of the X-ray properties of simulated galaxy clusters : comparison with observational constraints , 2004, astro-ph/0407021.

[34]  A. C. Fabian,et al.  Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters , 2004 .

[35]  L. Moscardini,et al.  A dynamical model for the distribution of dark matter and gas in galaxy clusters , 2003, astro-ph/0309405.

[36]  D. Clowe,et al.  Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56 , 2003, astro-ph/0309303.

[37]  U. A. D. Madrid,et al.  The radial structure of galaxy groups and clusters , 2003, astro-ph/0306264.

[38]  A. Finoguenov,et al.  The Birmingham-CfA cluster scaling project - III. Entropy and similarity in galaxy systems , 2003, astro-ph/0304048.

[39]  J. Mohr,et al.  Near-Infrared Properties of Galaxy Clusters: Luminosity as a Binding Mass Predictor and the State of Cluster Baryons , 2003, astro-ph/0304033.

[40]  S. Virani,et al.  Chandra Temperature Map of A754 and Constraints on Thermal Conduction , 2003, astro-ph/0301367.

[41]  S. Borgani,et al.  On determining the cluster abundance normalization , 2002, astro-ph/0210567.

[42]  R. Valdarnini Iron abundances and heating of the intracluster medium in hydrodynamical simulations of galaxy clusters , 2002, astro-ph/0210263.

[43]  D. Nagai,et al.  Effect of Internal Flows on Sunyaev-Zeldovich Measurements of Cluster Peculiar Velocities , 2002, astro-ph/0208308.

[44]  A. Hornstrup,et al.  Cosmological Constraints from the Evolution of the Cluster Baryon Mass Function at z ~ 0.5 , 2002, astro-ph/0212075.

[45]  R. Nichol,et al.  Detecting the Baryons in Matter Power Spectra , 2002, astro-ph/0207180.

[46]  A. Finoguenov,et al.  ASCA Observations of Groups at Radii of Low Overdensity: Implications for the Cosmic Preheating , 2002, astro-ph/0206362.

[47]  S. Borgani,et al.  The effect of non-gravitational gas heating in groups and clusters of galaxies , 2002, astro-ph/0205471.

[48]  G. Bryan,et al.  Modified Entropy Models for the Intracluster Medium , 2002, astro-ph/0205240.

[49]  D. Weinberg,et al.  X-Ray Scaling Relations of Galaxy Groups in a Hydrodynamic Cosmological Simulation , 2002, astro-ph/0205037.

[50]  B. Nath,et al.  Heating of the intracluster medium by quasar outflows , 2002, astro-ph/0202201.

[51]  R. Valdarnini Numerical Convergence of Physical Variables in Hydrodynamical Simulations of Cooling Clusters , 2001, astro-ph/0110545.

[52]  Milan,et al.  Temperature Profiles of Nearby Clusters of Galaxies , 2001, astro-ph/0110469.

[53]  Yehuda Hoffman,et al.  Constrained Simulations of the Real Universe. II. Observational Signatures of Intergalactic Gas in the Local Supercluster Region , 2001, astro-ph/0109077.

[54]  Yasuo Tanaka,et al.  A new measurement of the X-ray temperature function of clusters of galaxies , 2001, astro-ph/0112315.

[55]  G. Bryan,et al.  Regulation of the X-ray luminosity of clusters of galaxies by cooling and supernova feedback , 2001, Nature.

[56]  U. Seljak Cluster number density normalization from the observed mass–temperature relation , 2001, astro-ph/0111362.

[57]  S. Borgani,et al.  Preheating the Intracluster Medium in High-Resolution Simulations: The Effect on the Gas Entropy , 2001, astro-ph/0108329.

[58]  M. White,et al.  Power-spectrum normalization from the local abundance of rich clusters of galaxies , 2001 .

[59]  F. Pearce,et al.  The Effect of Radiative Cooling on Scaling Laws of X-Ray Groups and Clusters , 2001, astro-ph/0102048.

[60]  A. Finoguenov,et al.  Details of the mass-temperature relation for clusters of galaxies , 2000, astro-ph/0010190.

[61]  J. Bullock,et al.  Resolving the Structure of Cold Dark Matter Halos , 2000, astro-ph/0006343.

[62]  A. Evrard,et al.  Four Measures of the Intracluster Medium Temperature and Their Relation to a Cluster’s Dynamical State , 2000, astro-ph/0004309.

[63]  J. Mohr,et al.  Effects of Preheating on X-Ray Scaling Relations in Galaxy Clusters , 2000, astro-ph/0010584.

[64]  F. Pearce,et al.  The effect of radiative cooling on the X-ray properties of galaxy clusters , 2000 .

[65]  G. Bryan Explaining the Entropy Excess in Clusters and Groups of Galaxies without Additional Heating , 2000, astro-ph/0009286.

[66]  M. Markevitch,et al.  Chandra Estimate of the Magnetic Field Strength near the Cold Front in A3667 , 2000, astro-ph/0008499.

[67]  M. Markevitch,et al.  A Moving Cold Front in the Intergalactic Medium of A3667 , 2000, astro-ph/0008496.

[68]  T. Ponman,et al.  Are X‐ray properties of loose groups different from those of compact groups? , 2000, astro-ph/0008194.

[69]  D. Weinberg,et al.  The Effects of Gasdynamics, Cooling, Star Formation, and Numerical Resolution in Simulations of Cluster Formation , 1999, astro-ph/9907097.

[70]  Non‐gravitational heating in the hierarchical formation of X‐ray clusters , 1999, astro-ph/9907112.

[71]  M. Steinmetz,et al.  The Santa Barbara Cluster Comparison Project: A Comparison of Cosmological Hydrodynamics Solutions , 1999, astro-ph/9906160.

[72]  A. Evrard,et al.  The LX—T relation and intracluster gas fractions of X-ray clusters , 1998, astro-ph/9806353.

[73]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[74]  J. Ostriker,et al.  The Effect of Cooling on the Density Profile of Hot Gas in Clusters of Galaxies: Is Additional Physics Needed? , 1998, astro-ph/9803318.

[75]  S. Allen,et al.  The impact of cooling flows on the TX–LBol relation for the most luminous clusters , 1998, astro-ph/9802218.

[76]  Maxim Markevitch,et al.  The LX-T Relation and Temperature Function for Nearby Clusters Revisited , 1998, astro-ph/9802059.

[77]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[78]  G. Lake,et al.  Resolving the Structure of Cold Dark Matter Halos , 1997, astro-ph/9709051.

[79]  Cambridge,et al.  An investigation of cooling flows and general cluster properties from an X-ray image deprojection analysis of 207 clusters of galaxies , 1997, astro-ph/9707269.

[80]  A. Evrard,et al.  Mass estimates of X-ray clusters , 1995, astro-ph/9510058.

[81]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[82]  A. Evrard,et al.  A Simulation of the Intracluster Medium With Feedback from Cluster Galaxies , 1993, astro-ph/9309050.

[83]  A. Evrard,et al.  Expectations for X-ray cluster observations by the Rosat satellite , 1991 .

[84]  W. Forman,et al.  Enrichment and Heating of the Intracluster Medium through Galactic Winds , 1991 .

[85]  A. Edge,et al.  EXOSAT observations of clusters of galaxies. I - The X-ray data. II - X-ray to optical correlations , 1991 .

[86]  Keith A. Arnaud,et al.  A measurement of the mass fluctuation spectrum from the cluster X-ray temperature function , 1991 .

[87]  N. Kaiser Evolution of Clusters of Galaxies , 1991 .

[88]  Raymond E. White The metal abundance and specific energy of intracluster gas , 1991 .

[89]  A. Evrard Formation and Evolution of X-Ray Clusters: A Hydrodynamic Simulation of the Intracluster Medium , 1990 .

[90]  Nick Kaiser,et al.  Evolution and clustering of rich clusters , 1986 .