To Combine Forecasts or to Combine Information?

When the objective is to forecast a variable of interest but with many explanatory variables available, one could possibly improve the forecast by carefully integrating them. There are generally two directions one could proceed: combination of forecasts (CF) or combination of information (CI). CF combines forecasts generated from simple models each incorporating a part of the whole information set, while CI brings the entire information set into one super model to generate an ultimate forecast. Through linear regression analysis and simulation, we show the relative merits of each, particularly the circumstances where forecast by CF can be superior to forecast by CI, when CI model is correctly specified and when it is misspecified, and shed some light on the success of equally weighted CF. In our empirical application on prediction of monthly, quarterly, and annual equity premium, we compare the CF forecasts (with various weighting schemes) to CI forecasts (with principal component approach mitigating the problem of parameter proliferation). We find that CF with (close to) equal weights is generally the best and dominates all CI schemes, while also performing substantially better than the historical mean.

[1]  J. M. Bates,et al.  The Combination of Forecasts , 1969 .

[2]  Mark W. Watson,et al.  Generalized Shrinkage Methods for Forecasting Using Many Predictors , 2012 .

[3]  J. Stock,et al.  Combination forecasts of output growth in a seven-country data set , 2004 .

[4]  Michael P. Clements,et al.  A companion to economic forecasting , 2004 .

[5]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[6]  D. Hendry,et al.  Econometric Evaluation of Linear Macro-Economic Models , 1986 .

[7]  Clive W. J. Granger,et al.  Combining competing forecasts of inflation using a bivariate arch model , 1984 .

[8]  C. Granger,et al.  Improved methods of combining forecasts , 1984 .

[9]  N. Edward Coulson,et al.  Forecast combination in a dynamic setting , 1993 .

[10]  R. Clemen Combining forecasts: A review and annotated bibliography , 1989 .

[11]  J. Bai,et al.  Forecasting economic time series using targeted predictors , 2008 .

[12]  Mark W. Watson,et al.  AN EMPIRICAL COMPARISON OF METHODS FOR FORECASTING USING MANY PREDICTORS , 2005 .

[13]  Yuhong Yang Can the Strengths of AIC and BIC Be Shared , 2005 .

[14]  A. Timmermann Forecast Combinations , 2005 .

[15]  Timo Teräsvirta,et al.  The combination of forecasts using changing weights , 1994 .

[16]  Arnold Zellner,et al.  To combine or not to combine? Issues of combining forecasts , 1992 .

[17]  Todd E. Clark,et al.  Combining Forecasts from Nested Models , 2007 .

[18]  Michael P. Clements,et al.  Pooling of Forecasts , 2004 .

[19]  J. Bai,et al.  Inferential Theory for Factor Models of Large Dimensions , 2003 .

[20]  J. Stock,et al.  Macroeconomic Forecasting Using Diffusion Indexes , 2002 .

[21]  K. Wallis,et al.  A Simple Explanation of the Forecast Combination Puzzle , 2009 .

[22]  J. Lewellen,et al.  Predicting Returns with Financial Ratios , 2002 .

[23]  T. Evgeniou,et al.  To combine or not to combine: selecting among forecasts and their combinations , 2005 .

[24]  Paul Newbold,et al.  Forecast Encompassing and Parameter Estimation , 2005 .

[25]  Luís Aguiar Conraria,et al.  Forecasting in data-rich environments , 2004 .

[26]  Greg Tkacz,et al.  Combining Forecasts with Nonparametric Kernel Regressions , 2004 .

[27]  Serena Ng,et al.  Boosting diffusion indices , 2009 .

[28]  Jonathan H. Wright,et al.  Forecasting Inflation , 2011 .

[29]  C. Granger,et al.  Handbook of Economic Forecasting , 2006 .

[30]  Ivana Komunjer,et al.  Evaluation and Combination of Conditional Quantile Forecasts , 2002 .

[31]  J. Stock,et al.  A dynamic factor model framework for forecast combination , 1999 .

[32]  A. Felix,et al.  FEDERAL RESERVE BANK OF KANSAS CITY , 1999 .

[33]  I. Welch,et al.  A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II , 2004, SSRN Electronic Journal.

[34]  Michael P. Clements,et al.  Forecast Combination and Encompassing , 2009 .

[35]  F. Diebold,et al.  Forecast Evaluation and Combination , 1996 .

[36]  Jonathan H. Wright,et al.  Forecasting In ation , 2011 .

[37]  Bruce E. Hansen,et al.  Least-squares forecast averaging , 2008 .

[38]  J. Bai,et al.  Determining the Number of Factors in Approximate Factor Models , 2000 .

[39]  Clive W. J. Granger,et al.  Invited review: combining forecasts - twenty years later , 2001 .

[40]  S. B. Thompson,et al.  Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average? , 2008 .

[41]  Michael P. Clements,et al.  Combining Predictors and Combining Information in Modelling: Forecasting US Recession Probabilities and Output Growth , 2006 .

[42]  Xiaotong Shen,et al.  Optimal Model Assessment, Selection, and Combination , 2006 .

[43]  K. West,et al.  Asymptotic Inference about Predictive Ability , 1996 .

[44]  J. Stock,et al.  Forecasting with Many Predictors , 2006 .

[45]  Francis X. Diebold,et al.  Forecast combination and encompassing: Reconciling two divergent literatures , 1989 .

[46]  K. Wallis,et al.  Combining Point Forecasts: The Simple Average Rules, OK? , 2005 .

[47]  C. Granger,et al.  Experience with Forecasting Univariate Time Series and the Combination of Forecasts , 1974 .

[48]  Francis X. Diebold,et al.  The use of prior information in forecast combination , 1990 .