Gas IR Radiative Properties: From Spectroscopic Data to Approximate Models

Abstract Different IR gas radiative property models suitable for a wide range of engineering applications (statistical narrowband, correlated- k :, correlated- k -fictitious gases, and models based on global absorption coefficient distribution functions, such as WSGG, SLW, ADF, and ADFFG) are presented. High-temperature properties, especially with CO 2 and H 2 O as active species, are emphasized. The accuracy of the different models is discussed by comparing their results with those of a line-by-line (LBL) approach, considered as a reference. This last model is introduced step by step, and the effects of the properties of the molecular states of the absorbing and emitting species on the properties of the corresponding spectra are discussed. The main physical features of complex IR spectra of CO 2 and H 2 O are presented in order to explain important phenomena occuring in different applications. The key point in the use of an LBL approach is the development of a complete and accurate spectroscopic database suitable for high-temperature applications. The parameters of approximate models are generated from the LBL approach in order to provide accurate predictions of radiative properties of uniform media. The intrinsic accuracy of these models applied to radiative transfer in nonuniform media is then studied. The implementation of the models is discussed on the basis of their formulations in terms of absorption coefficients or in terms of averaged transmissivities, and on the basis of their classification into band models and global models. Different methods for the treatment of mixtures of absorbing species are discussed.

[1]  A. Coppalle,et al.  The total emissivities of high-temperature flames , 1983 .

[2]  A. Soufiani,et al.  Accuracy of narrow-band and global models for radiative transfer in H2O, CO2, and H2OCO2 mixtures at high temperature , 1999 .

[3]  Anouar Soufiani,et al.  An approximate data base of H2O infrared lines for high temperature applications at low resolution. Statistical narrow-band model parameters , 1995 .

[4]  S. J. Young Band model formulation for inhomogeneous optical paths , 1975 .

[5]  C. Boulet,et al.  Collisionally induced population transfer effect in infrared absorption spectra. I. A line‐by‐line coupling theory from resonances to the far wings , 1988 .

[6]  W. Malkmus,et al.  Random Lorentz band model with exponential-tailed S-1 line-intensity distribution function , 1967 .

[7]  B. W. Webb,et al.  The Spectral Line-Based Weighted-Sum-of-Gray-Gases Model in Nonisothermal Nonhomogeneous Media , 1995 .

[8]  G. Herzberg,et al.  Spectra of diatomic molecules , 1950 .

[9]  M. K. Denison,et al.  A correlation for the reordered wave number of the wide-band absorptance of radiating gases , 1997 .

[10]  S. J. Young Addendum to: Band model formulation for inhomogeneous optical paths , 1975 .

[11]  Laurence S. Rothman,et al.  Determination of vibrational energy levels and parallel band intensities of 12C16O2 by Direct Numerical Diagonalization , 1986 .

[12]  M. Pinar Mengüç,et al.  Radiation heat transfer in combustion systems , 1987 .

[13]  J. Dufresne,et al.  Monte Carlo Simulation of Radiation in Gases With a Narrow-Band Model and a Net-Exchange Formulation , 1996 .

[14]  W. L. Godson THE COMPUTATION OF INFRARED TRANSMISSION BY ATMOSPHERIC WATER VAPOR , 1955 .

[15]  Laurence S. Rothman,et al.  Reprint of: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition , 1998 .

[16]  J. Hartmann,et al.  Line mixing and finite duration of collision effects in pure CO2 infrared spectra: Fitting and scaling analysis , 1991 .

[17]  Xun Zhu,et al.  An improved Voigt line approximation for the calculations of equivalent width and transmission. , 1988 .

[18]  A J Welch,et al.  Accuracies of the diffusion approximation and its similarity relations for laser irradiated biological media. , 1989, Applied optics.

[19]  A. Lacis,et al.  A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres , 1991 .

[20]  A. Soufiani,et al.  Spectral correlated and non-correlated radiative transfer in a finite axisymmetric system containing an absorbing and emitting real gasparticle mixture , 1988 .

[21]  A. Soufiani,et al.  Application of statistical narrow-band model to coupled radiation and convection at high temperature , 1987 .

[22]  Richard H. Tipping,et al.  The atmospheric water continuum in the infrared: Extension of the statistical theory of Rosenkranz , 1990 .

[23]  B. W. Webb,et al.  Development and application of an absorptionline blackbody distribution function for CO2 , 1995 .

[24]  F. X. Kneizys,et al.  Line shape and the water vapor continuum , 1989 .

[25]  Haeok S. Lee,et al.  Nongray Radiative Gas Analyses Using the S-N Discrete Ordinates Method , 1991 .

[26]  Jean-Michel Hartmann,et al.  Line-by-line and narrow-band statistical model calculations for H2O , 1984 .

[27]  R. West,et al.  THE CORRELATED-k METHOD FOR RADIATION CALCULATIONS IN NONHOMOGENEOUS ATMOSPHERES , 1989 .

[28]  Stephen J. Young,et al.  Nonisothermal Band Model Theory , 1976 .

[29]  B. W. Webb,et al.  An absorption-line blackbody distribution function for efficient calculation of total gas radiative transfer , 1993 .

[30]  J. Taine,et al.  Accurate calculated tabulations of CO line broadening by H(2)O, N(2), O(2), and CO(2) in the 200-3000-K temperature range. , 1988, Applied optics.

[31]  A. Arking,et al.  The influence of line shape and band structure on temperatures in planetary atmospheres , 1972 .

[32]  P. J. Foster,et al.  The total emissivities of luminous and non-luminous flames , 1974 .

[33]  E. Bright Wilson,et al.  Book Reviews: Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra , 1955 .

[34]  T. Kunitomo,et al.  Narrow band model parameters for the CO2 4·3 μm band , 1975 .

[35]  Wei-Chyung Wang,et al.  Total band absorptance and k-distribution function for atmospheric gases , 1988 .

[36]  Robert W. Field,et al.  Perturbations in the Spectra of Diatomic Molecules , 1986 .

[37]  A. Thomson,et al.  Empirically determined infrared absorption coefficients of H2O from 300 to 3000°K , 1966 .

[38]  Jeffrey I. Steinfeld,et al.  Molecules and radiation : an introduction to modern molecular spectroscopy , 2005 .

[39]  J. Taine,et al.  A fictive gas-method for accurate computations of low-resolution IR gas transmissivities : application to the 4.3 μm CO2 band , 1986 .

[40]  Jean-Michel Hartmann,et al.  Collision‐induced population transfer in infrared absorption spectra. III. Temperature dependence of absorption in the Ar‐broadened wing of CO2 ν3 band , 1990 .

[41]  C. Ludwig,et al.  SPECTRAL EMISSIVITY MEASUREMENTS OF THE 4.3 - MICRON CO2 BAND BETWEEN 2650 AND 3000 K. , 1966 .

[42]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[43]  S. Fels Simple strategies for inclusion of Voigt effects in infrared cooling rate calculations. , 1979, Applied optics.

[44]  J. Tennyson,et al.  A spectroscopic linelist for hot water , 1997 .

[45]  T. F. Smith,et al.  Evaluation of Coefficients for the Weighted Sum of Gray Gases Model , 1982 .

[46]  Jean-Michel Hartmann,et al.  Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3μm CO2 band , 1989 .

[47]  Theodore F. Smith,et al.  Combined radiation-convection for a real gas , 1975 .

[48]  Wei‐Chyung Wang An analytical expression for the total band absorptance of infrared-radiating gases , 1983 .

[49]  J. Hartmann,et al.  Validity of band-model calculations for CO2 and H2O applied to radiative properties and conductive-radiative transfer , 1985 .

[50]  F. S. Simmons,et al.  A band model formulation for very nonuniform paths , 1972 .

[51]  R. O. Buckius,et al.  Wideband Correlated-k Method Applied to Absorbing, Emitting, and Scattering Media , 1996 .

[52]  A. P. Williams,et al.  Integrated absorption of a spectral line with the Voigt profile , 1974 .

[53]  L. Bernstein Band model parameters for the parallel bands of linear triatomic molecules—I. Theory , 1980 .

[54]  R. Goody,et al.  A statistical model for water‐vapour absorption , 1952 .

[55]  A. Soufiani,et al.  A NEW ck DATA BASIS SUITABLE FROM 300 TO 2500K FOR SPECTRALLY CORRELATED RADIATIVE TRANSFER IN CO2- H2O-TRANSPARENT GAS MIXTURES , 1994 .

[56]  E. Djavdan,et al.  A comparison between weighted sum of gray gases and statistical narrow-band radiation models for combustion applications , 1994 .

[57]  Philippe Rivière,et al.  A fictitious-gas-based absorption distribution function global model for radiative transfer in hot gases , 1999 .

[58]  L. Rosenmann,et al.  Approximate intensities of CO2 hot bands at 2.7, 4.3, and 12μm for high temperature and medium resolution applications , 1994 .

[59]  Son Tae-Ho Comparison of engineering models of nongray behavior of combustion products , 1993 .

[60]  A. Soufiani,et al.  ACCURACY OF VARIOUS GAS IR RADIATIVE PROPERTY MODELS APPLIED TO RADIATIVE TRANSFER IN PLANAR MEDIA , 1995 .

[61]  D. Robert,et al.  Short range force effects in semiclassical molecular line broadening calculations , 1979 .

[62]  Lawrence S. Bernstein,et al.  Band model parameters for the 4.3 μm CO2 band from 200 to 3000°K—II. Prediction, comparison to experiment, and application to plume emission-absorption calculations , 1980 .

[63]  A. Soufiani,et al.  Correlated-k fictitious gas model for H2O infrared radiation in the Voigt regime , 1995 .

[64]  N. N. Filippov,et al.  Influence of line interference on the vibration-rotation band shapes , 1984 .

[65]  William L. Grosshandler,et al.  Radiative heat transfer in nonhomogeneous gases: A simplified approach , 1980 .

[66]  S. Tiwari Models for Infrared Atmospheric Radiation , 1978 .

[67]  S. J. Young Evaluation of nonisothermal band models for H2O , 1977 .

[68]  R. O. Buckius,et al.  Wide band correlated-k approach to thermal radiative transport in nonhomogeneous media , 1997 .

[69]  L. Rosenmann,et al.  Accurate calculated tabulations of IR and Raman CO(2) line broadening by CO(2), H2O, N(2), O(2) in the 300-2400-K temperature range. , 1988, Applied optics.

[70]  Air mixture radiative property modelling in the temperature range 10,000–40,000 K , 1996 .

[71]  A. Soufiani,et al.  Correlated-k and fictitious gas methods for H2O near 2.7 μm , 1992 .

[72]  C. J. Tsao,et al.  Line-widths of pressure-broadened spectral lines , 1962 .

[73]  G. Herzberg,et al.  Molecular spectra and molecular structure. Vol.3: Electronic spectra and electronic structure of polyatomic molecules , 1966 .

[74]  C. L. Tien,et al.  Thermal Radiation Properties of Gases , 1969 .

[75]  W. Malkmus Random band models with lines of pure Doppler shape. , 1968 .

[76]  D. K. Edwards,et al.  Molecular Gas Band Radiation , 1976 .

[77]  S. A. Golden The Doppler analog of the Elsasser band model. II. , 1967 .

[78]  V. M. Devi,et al.  THE HITRAN MOLECULAR DATABASE: EDITIONS OF 1991 AND 1992 , 1992 .

[79]  S. A. Golden The Voigt analog of an Elsasser band , 1969 .

[80]  C. B. Ludwig,et al.  Handbook of infrared radiation from combustion gases , 1973 .

[81]  W. Phillips Band-model parameters of the 2.7-μm band of H2O☆ , 1990 .

[82]  Anouar Soufiani,et al.  High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2 and CO, and correlated-K model for H2O and CO2 , 1997 .

[83]  R. Dicke The effect of collisions upon the Doppler width of spectral lines , 1953 .

[84]  Harry Partridge,et al.  The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data , 1997 .

[85]  A. Messiah Quantum Mechanics , 1961 .

[86]  Alain Chedin,et al.  The GEISA data bank in 1993: A PC/AT compatible computers' new version , 1994 .

[87]  M. Schwarzkopf,et al.  Approximate methods for finding CO2 15‐μm band transmission in planetary atmospheres , 1986 .

[88]  J. Hartmann,et al.  Calculated tabulations of H(2)O line broadening by H(2)O, N(2), O(2), and CO(2) at high temperature. , 1989, Applied optics.

[89]  P. J. Foster,et al.  Some gray gas weighting coefficients for CO2-H2O-soot mixtures , 1975 .

[90]  Jean-Michel Hartmann,et al.  The infrared continuum of pure water vapor: Calculations and high-temperature measurements , 1993 .

[91]  Gilbert N. Plass,et al.  Models for Spectral Band Absorption , 1958 .

[92]  B. W. Webb,et al.  A Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers , 1993 .

[93]  D. M. Hirst Potential energy surfaces : molecular structure and reaction dynamics , 1985 .

[94]  Laurence S. Rothman,et al.  HITRAN HAWKS and HITEMP: high-temperature molecular database , 1995, Defense, Security, and Sensing.

[95]  Richard H. Tipping,et al.  Water vapor continuum in the millimeter spectral region , 1990 .

[96]  M. Modest The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer , 1991 .

[97]  k-DISTRIBUTIONS AND WEIGHTED-SUM-OF-GRAY-GASES-A HYBRID MODEL , 1994 .

[98]  P. Anderson Pressure Broadening in the Microwave and Infra-Red Regions , 1949 .

[99]  C. Ludwig Measurements of the Curves-of-Growth of Hot Water Vapor. , 1971, Applied optics.

[100]  K. Hollands,et al.  Reordering the Absorption Coefficient Within the Wide Band for Predicting Gaseous Radiant Exchange , 1996 .

[101]  L. Galatry,et al.  Simultaneous Effect of Doppler and Foreign Gas Broadening on Spectral Lines , 1961 .

[102]  J. Taine A line-by-line calculation of low-resolution radiative properties of CO2-CO-transparent nonisothermal gases mixtures up to 3000 K , 1983 .

[103]  D. Robert,et al.  Collisionally induced population transfer effect in infrared absorption spectra. II. The wing of the Ar‐broadened ν3 band of CO2 , 1989 .

[104]  G. Herzberg,et al.  Infrared and Raman spectra of polyatomic molecules , 1946 .

[105]  G. Domoto Frequency integration for radiative transfer problems involving homogeneous non-gray gases: The inverse transmission function , 1974 .

[106]  D. Edwards,et al.  Comparison of Models for Correlation of Total Band Absorption , 1964 .

[107]  B. W. Webb,et al.  The Spectral-Line Weighted-Sum-of-Gray-Gases Model for H2O/CO2 Mixtures , 1995 .

[108]  Haeok S. Lee,et al.  Discrete ordinates solutions of nongray radiative transfer with diffusely reflecting walls , 1993 .

[109]  Band-model parameters for 4.3μm CO2 band in the 300–1000 K temperature region☆ , 1992 .