control of LPV systems with saturating actuators: Pólya approach

SUMMARY This paper addresses the design problem of , gain-scheduling non-linear state-feedback controller for linear parameter varying (LPV) systems, subjected to actuator saturations and bounded energy disturbances, by using parameter-dependent type Lyapunov functions. The paper provides a systematic procedure to generate a sequence of linear matrix inequality (LMI) type conditions of increasing precision for obtaining a suboptimal state-feedback controller. The presented method utilizes the modified sector condition for formalization of actuator saturation and homogeneous polynomial parameter-dependent representation of LPV systems. Both simulations and experimental studies on an inverted pendulum on a cart system illustrate the benefits of the approach. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  Tingshu Hu,et al.  Analysis of linear systems in the presence of actuator saturation and I-disturbances , 2004, Autom..

[2]  P.L.D. Peres,et al.  Design of H∞ Gain-Scheduled Controllers for Linear Time-Varying Systems by means of Polynomial Lyapunov Functions , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[3]  Manfred Morari,et al.  Constrained time-optimal control of linear parameter-varying systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[4]  Ricardo C. L. F. Oliveira,et al.  A convex optimization procedure to compute ℋ︁2 and ℋ︁∞ norms for uncertain linear systems in polytopic domains , 2008 .

[5]  S. Tarbouriech,et al.  Anti-windup design with guaranteed regions of stability: an LMI-based approach , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[6]  D. Bernstein,et al.  A chronological bibliography on saturating actuators , 1995 .

[7]  Zongli Lin H∞-almost disturbance decoupling with internal stability for linear systems subject to input saturation , 1997, IEEE Trans. Autom. Control..

[8]  P.L.D. Peres,et al.  Gain-Scheduled Controllers for Linear Parameter-Varying Systems with Saturating Actuators: LMI-based Design , 2007, 2007 American Control Conference.

[9]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[10]  Michel Verhaegen,et al.  Identification of linear parameter-varying state-space models with application to helicopter rotor dynamics , 2004 .

[11]  Graziano Chesi,et al.  Robust stability of time-varying polytopic systems via parameter-dependent homogeneous Lyapunov functions , 2007, Autom..

[12]  Ricardo C. L. F. Oliveira,et al.  LMI relaxations for robust H2 performance analysis of polytopic linear systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[13]  Ping Hou,et al.  Simultaneous External and Internal Stabilization for Continuous and Discrete-Time Critically Unstable Linear Systems with Saturating Actuators , 1998, Autom..

[14]  Alexandre Trofino,et al.  Biquadratic stability of uncertain linear systems , 2001, IEEE Trans. Autom. Control..

[15]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[16]  P.L.D. Peres,et al.  Existence of Homogeneous Polynomial Solutions for Parameter-Dependent Linear Matrix Inequalities with Parameters in the Simplex , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[17]  Manfred Morari,et al.  Explicit MPC for LPV Systems: Stability and Optimality , 2012, IEEE Transactions on Automatic Control.

[18]  P. Peres,et al.  Stability of polytopes of matrices via affine parameter-dependent lyapunov functions : Asymptotically exact LMI conditions , 2005 .

[19]  V.F. Montagner,et al.  State feedback gain scheduling for linear systems with time-varying parameters , 2004, Proceedings of the 2004 American Control Conference.

[20]  Ricardo C. L. F. Oliveira,et al.  H∞ Guaranteed Cost Computation by Means of Parameter Dependent Lyapunov Functions , 2003 .

[21]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[22]  Ali Saberi,et al.  On simultaneous global external and global internal stabilization of critically unstable linear systems with saturating actuators , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[23]  Isabelle Queinnec,et al.  ℒ︁2‐Stabilization of continuous‐time linear systems with saturating actuators , 2006 .

[24]  Claudio Hermida,et al.  On weak higher dimensional categories I: Part 1 ( , 2000 .

[25]  Miroslav Fikar,et al.  Design and implementation of model predictive control using Multi-Parametric Toolbox and YALMIP , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.

[26]  C. D. Souza,et al.  Robust /spl Hscr//sub /spl infin// control of uncertain linear systems via parameter-dependent Lyapunov functions , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[27]  Sophie Tarbouriech,et al.  Antiwindup design with guaranteed regions of stability: an LMI-based approach , 2005, IEEE Transactions on Automatic Control.

[28]  B. Reznick,et al.  A new bound for Pólya's Theorem with applications to polynomials positive on polyhedra , 2001 .

[29]  Ricardo C. L. F. Oliveira,et al.  2 guaranteed cost computation by means of parameter dependent Lyapunov functions , 2004, Int. J. Syst. Sci..

[30]  Péter Gáspár,et al.  Active suspension design using linear parameter varying control , 2003 .

[31]  Tingshu Hu,et al.  An analysis and design method for linear systems subject to actuator saturation and disturbance , 2002, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[32]  C. Scherer,et al.  LPV design for a CD player: an experimental evaluation of performance , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[33]  William Leithead,et al.  Survey of gain-scheduling analysis and design , 2000 .

[34]  P. Gahinet,et al.  Affine parameter-dependent Lyapunov functions and real parametric uncertainty , 1996, IEEE Trans. Autom. Control..

[35]  E. Feron,et al.  Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions , 1996, IEEE Trans. Autom. Control..

[36]  Andrew R. Teel,et al.  Control of linear systems with saturating actuators , 1996 .

[37]  Okko H. Bosgra,et al.  LPV control for a wafer stage: beyond the theoretical solution , 2005 .

[38]  Ricardo C. L. F. Oliveira,et al.  H∞ GUARANTEED COST COMPUTATION VIA POLYNOMIALLY PARAMETER-DEPENDENT LYAPUNOV FUNCTIONS , 2005 .

[39]  Gary J. Balas,et al.  Linear, parameter‐varying control and its application to a turbofan engine , 2002 .

[40]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[41]  Eduardo Sontag,et al.  On Finite-Gain Stabilizability of Linear Systems Subject to Input Saturation , 1996 .

[42]  J. Geromel,et al.  Extended H 2 and H norm characterizations and controller parametrizations for discrete-time systems , 2002 .

[43]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..