Lattice rules: how well do they measure up? in random and quasi-random point sets

A simple, but often effective, way to approximate an integral over the s-dimensional unit cube is to take the average of the integrand over some set P of N points. Monte Carlo methods choose P randomly and typically obtain an error of 0(N-1/2). Quasi-Monte Carlo methods attempt to decrease the error by choosing P in a deterministic (or quasi-random) way so that the points are more uniformly spread over the integration domain.

[1]  E. Hlawka Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .

[2]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[3]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[4]  S. C. Zaremba Some applications of multidimensional integration by parts , 1968 .

[5]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[6]  B. Efron,et al.  The Jackknife Estimate of Variance , 1981 .

[7]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[8]  I. Sloan,et al.  Lattice methods for multiple integration: theory, error analysis and examples , 1987 .

[9]  Saburou Saitoh,et al.  Theory of Reproducing Kernels and Its Applications , 1988 .

[10]  G. Wahba Spline models for observational data , 1990 .

[11]  Ian H. Sloan,et al.  Error bounds for the method of good lattice points , 1991 .

[12]  H. Wozniakowski Average case complexity of multivariate integration , 1991 .

[13]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[14]  Harald Niederreiter,et al.  Implementation and tests of low-discrepancy sequences , 1992, TOMC.

[15]  Hans Föllmer,et al.  A Microeconomic Approach to Diffusion Models For Stock Prices , 1993 .

[16]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[17]  Russel E. Caflisch,et al.  Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..

[18]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[19]  T. Langtry The determination of canonical forms for lattice quadrature rules , 1995 .

[20]  Fred J. Hickernell,et al.  A Comparison of Random and Quasirandom Points for Multidimensional Quadrature , 1995 .

[21]  T. N. Langtry,et al.  An application of Diophantine approximation to the construction of rank-1 lattice quadrature rules , 1996, Math. Comput..

[22]  Stephen Joe,et al.  Triangular canonical forms for lattice rules of prime-power order , 1996, Math. Comput..

[23]  Karin Frank,et al.  Computing Discrepancies of Smolyak Quadrature Rules , 1996, J. Complex..

[24]  Ronald Cools,et al.  Minimal cubature formulae of trigonometric degree , 1996, Math. Comput..

[25]  Fred J. Hickernell,et al.  The mean square discrepancy of randomized nets , 1996, TOMC.

[26]  S. Tezuka,et al.  Toward real-time pricing of complex financial derivatives , 1996 .

[27]  Stefan Heinrich,et al.  Efficient algorithms for computing the L2-discrepancy , 1996, Math. Comput..

[28]  A. Owen Scrambled net variance for integrals of smooth functions , 1997 .

[29]  F. J. Hickernell Quadrature Error Bounds with Applications to Lattice Rules , 1997 .

[30]  A. Owen,et al.  Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .

[31]  J HickernellF,et al.  Computing Multivariate Normal Probabilities Using Rank-1 Lattice Sequences , 1997 .

[32]  Ian H. Sloan,et al.  Cubature Rules of Prescribed Merit , 1997 .

[33]  Henryk Wozniakowski,et al.  An intractability result for multiple integration , 1997, Math. Comput..

[34]  A. Owen Monte Carlo Variance of Scrambled Net Quadrature , 1997 .

[35]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[36]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[37]  Fred J. Hickernell,et al.  The asymptotic efficiency of randomized nets for quadrature , 1999, Math. Comput..