Transmission Power Control for Opportunistic QoS Provision in Wireless Networks

This paper proposes an automatic control framework to address the problem of distributed and opportunistic transmission power control in wireless communication networks. The proposed framework allows high flexibility on the quality of service (QoS) provision by exploiting the link quality variation. It associates a standard target tracking algorithm with a dynamic target QoS determined by a linear quadratic regulator (LQR) controller that induces an opportunistic behavior. Strict QoS requirements can also be fulfilled by choosing appropriately the weighting parameters of the LQR synthesis. To prevent performance degradation due to measurement uncertainties, robust solutions are developed. The proposed mixed <i>H</i><sub>2</sub>/<i>H</i><sub>∞</sub> distributed power control combines the optimal <i>H</i><sub>2</sub> control and the robust <i>H</i><sub>∞</sub> control to obtain trade-off solutions. All developed algorithms present low computational complexity, and the mixed <i>H</i><sub>2</sub>/<i>H</i><sub>∞</sub> distributed power control can operate as the pure <i>H</i><sub>2</sub> control if the robust constraint is relaxed according to the choice of a single parameter. The performance of proposed algorithms is assessed through computer simulations.

[1]  W. C. Jakes,et al.  Microwave Mobile Communications , 1974 .

[2]  M. Gudmundson Correlation Model for Shadow Fading in Mobile Radio Systems , 1991 .

[3]  A.-J. Van der Veen,et al.  The bounded real lemma for discrete time-varying systems with application to robust output feedback , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[4]  Gerard J. Foschini,et al.  A simple distributed autonomous power control algorithm and its convergence , 1993 .

[5]  Zoran Gajic,et al.  Autonomous Dynamic Power Control for Wireless Networks: User-Centric and Network-Centric Consideration , 2008, IEEE Transactions on Wireless Communications.

[6]  F. de S. Chaves,et al.  Opportunistic distributed power control with adaptive QoS and fairness for wireless networks , 2010, CMC 2010.

[7]  Eitan Altman,et al.  CDMA Uplink Power Control as a Noncooperative Game , 2002, Wirel. Networks.

[8]  João Marcos Travassos Romano,et al.  Mixed H2/H8 power control with adaptive QoS for wireless communication networks , 2009, 2009 European Control Conference (ECC).

[9]  J. M. Holtzman,et al.  CDMA power control for wireless networks , 1992 .

[10]  Fredrik Gunnarsson Fundamental limitations of power control and radio resource management in wireless networks , 2004, Wirel. Commun. Mob. Comput..

[11]  Babak Hassibi,et al.  Indefinite-Quadratic Estimation And Control , 1987 .

[12]  Sylvie Perreau,et al.  A new method for centralised and decentralised robust power control in CDMA systems , 2006, Digit. Signal Process..

[13]  T. Kailath,et al.  Indefinite-quadratic estimation and control: a unified approach to H 2 and H ∞ theories , 1999 .

[14]  Ness B. Shroff,et al.  A utility-based power-control scheme in wireless cellular systems , 2003, TNET.

[15]  Cem U. Saraydar,et al.  Efficient power control via pricing in wireless data networks , 2002, IEEE Trans. Commun..

[16]  Bore-Kuen Lee,et al.  Robust$H_infty$Power Control for CDMA Cellular Communication Systems , 2006, IEEE Transactions on Signal Processing.

[17]  David J. Goodman,et al.  Distributed power control in cellular radio systems , 1994, IEEE Trans. Commun..

[18]  David Tse,et al.  Multiaccess Fading Channels-Part I: Polymatroid Structure, Optimal Resource Allocation and Throughput Capacities , 1998, IEEE Trans. Inf. Theory.

[19]  Gregory J. Pottie,et al.  Admission control schemes for wireless communication networks with adjustable transmitter powers , 1994, Proceedings of INFOCOM '94 Conference on Computer Communications.

[20]  Lajos Hanzo,et al.  Adaptive Wireless Transceivers: Turbo-Coded, Turbo-Equalized and Space-Time Coded TDMA, CDMA and OFDM Systems , 2002 .

[21]  A. Stoorvogel The discrete time H∞ control problem with measurement feedback , 1992 .

[22]  Vojtech Veselý,et al.  A necessary and sufficient condition for static output feedback stabilizability of linear discrete-time systems , 2003, Kybernetika.

[23]  Michel Verhaegen,et al.  Distributed Control for Identical Dynamically Coupled Systems: A Decomposition Approach , 2009, IEEE Transactions on Automatic Control.

[24]  Nageen Himayat,et al.  Interference management for 4G cellular standards [WIMAX/LTE UPDATE] , 2010, IEEE Communications Magazine.

[25]  Debasis Mitra,et al.  An Asynchronous Distributed Algorithm for Power Control in Cellular Radio Systems , 1994 .

[26]  Xue Dong,et al.  Robust Power Control for CDMA Cellular Communication Systems via H2 Optimal Theory , 2008, 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing.

[27]  Andrea J. Goldsmith,et al.  Adaptive coded modulation for fading channels , 1998, IEEE Trans. Commun..

[28]  David Tse,et al.  Multiaccess Fading Channels-Part II: Delay-Limited Capacities , 1998, IEEE Trans. Inf. Theory.

[29]  Carlos E. de Souza,et al.  A necessary and sufficient condition for output feedback stabilizability , 1995, Autom..

[30]  Jens Zander,et al.  Performance of optimum transmitter power control in cellular radio systems , 1992 .

[31]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[32]  Antti Toskala,et al.  WCDMA for UMTS: Radio Access for Third Generation Mobile Communications , 2000 .

[33]  H. Abou-Kandil,et al.  Distributed power control for QoS-flexible services in wireless communication networks , 2009, 2009 17th Mediterranean Conference on Control and Automation.

[34]  Lihua Xie,et al.  On the Discrete-time Bounded Real Lemma with application in the characterization of static state feedback H ∞ controllers , 1992 .

[35]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[36]  Stephen B. Wicker,et al.  Game theory and the design of self-configuring, adaptive wireless networks , 2001, IEEE Commun. Mag..

[37]  G. Dullerud,et al.  A Course in Robust Control Theory: A Convex Approach , 2005 .

[38]  Roy D. Yates,et al.  A Framework for Uplink Power Control in Cellular Radio Systems , 1995, IEEE J. Sel. Areas Commun..

[39]  Francisco R. P. Cavalcanti,et al.  Power Control for Wireless Networks: Conventional and QoS-Flexible Approaches , 2009 .

[40]  A. Subramanian,et al.  Joint rate and power control algorithms for wireless networks , 2005, IEEE Transactions on Signal Processing.

[41]  Lin Zongli,et al.  Simultaneous H_2/H_∞ Optimal Control for Discrete-Time Systems:The State Feedback Case , 1998 .

[42]  J. Geromel,et al.  An LMI optimization approach to multiobjective controller design for discrete-time systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[43]  Chi Wan Sung,et al.  A generalized framework for distributed power control in wireless networks , 2005, IEEE Trans. Inf. Theory.

[44]  Maciejowsk Multivariable Feedback Design , 1989 .

[45]  Mung Chiang,et al.  Power Control in Wireless Cellular Networks , 2008, Found. Trends Netw..

[46]  Fernando Paganini,et al.  A Course in Robust Control Theory , 2000 .

[47]  Xiaoxin Qiu,et al.  On the performance of adaptive modulation in cellular systems , 1999, IEEE Trans. Commun..

[48]  Jens Zander,et al.  Distributed cochannel interference control in cellular radio systems , 1992 .

[49]  Chi Wan Sung,et al.  An opportunistic power control algorithm for cellular network , 2006, IEEE/ACM Trans. Netw..

[50]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .