The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition.

[1]  H. Erdjument-Bromage,et al.  An iron delivery pathway mediated by a lipocalin. , 2002, Molecular cell.

[2]  H. Vogel,et al.  X-ray Crystallographic Structures of the Escherichia coli Periplasmic Protein FhuD Bound to Hydroxamate-type Siderophores and the Antibiotic Albomycin* , 2002, The Journal of Biological Chemistry.

[3]  Andrew D. Ferguson,et al.  Structural Basis of Gating by the Outer Membrane Transporter FecA , 2002, Science.

[4]  Constance E. Brinckerhoff,et al.  Matrix metalloproteinases: a tail of a frog that became a prince , 2002, Nature Reviews Molecular Cell Biology.

[5]  M. Yaffe Phosphotyrosine-binding domains in signal transduction , 2002, Nature Reviews Molecular Cell Biology.

[6]  B. Bassler,et al.  Structural identification of a bacterial quorum-sensing signal containing boron , 2002, Nature.

[7]  J. G. Teodoro,et al.  Induction of Apoptosis by a Secreted Lipocalin That is Transcriptionally Regulated by IL-3 Deprivation , 2001, Science.

[8]  H. Tschesche,et al.  The human neutrophil lipocalin supports the allosteric activation of matrix metalloproteinases. , 2001, European journal of biochemistry.

[9]  G N Murshudov,et al.  Use of TLS parameters to model anisotropic displacements in macromolecular refinement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[10]  D R Flower,et al.  Beyond the superfamily: the lipocalin receptors. , 2000, Biochimica et biophysica acta.

[11]  D R Flower,et al.  The lipocalin protein family: structural and sequence overview. , 2000, Biochimica et biophysica acta.

[12]  D R Flower,et al.  Lipocalins: unity in diversity. , 2000, Biochimica et biophysica acta.

[13]  P. Venge,et al.  Lipocalins as biochemical markers of disease. , 2000, Biochimica et biophysica acta.

[14]  L. Kjeldsen,et al.  Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse. , 2000, Biochimica et biophysica acta.

[15]  Z. Cao,et al.  Aromatic components of two ferric enterobactin binding sites in Escherichia coli FepA , 2000, Molecular microbiology.

[16]  R. Armen,et al.  Ligand preference inferred from the structure of neutrophil gelatinase associated lipocalin. , 2000, Biochemistry.

[17]  C. Ratledge,et al.  Iron metabolism in pathogenic bacteria. , 2000, Annual review of microbiology.

[18]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[19]  S. Ohlson,et al.  Interactions between neutrophil gelatinase-associated lipocalin and natural lipophilic ligands. , 1999, Biochimica et biophysica acta.

[20]  D. A. Dougherty,et al.  Cation-π interactions in structural biology , 1999 .

[21]  P. Klebba,et al.  Effect of loop deletions on the binding and transport of ferric enterobactin by FepA , 1999, Molecular microbiology.

[22]  H. Kessler,et al.  The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin. , 1999, Journal of molecular biology.

[23]  D E McRee,et al.  XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. , 1999, Journal of structural biology.

[24]  V. Braun,et al.  Bacterial solutions to the iron-supply problem. , 1999, Trends in biochemical sciences.

[25]  C R Kissinger,et al.  Rapid automated molecular replacement by evolutionary search. , 1999, Acta crystallographica. Section D, Biological crystallography.

[26]  J. Deisenhofer,et al.  Crystal structure of the outer membrane active transporter FepA from Escherichia coli , 1999, Nature Structural Biology.

[27]  D. A. Dougherty,et al.  Cation-pi interactions in structural biology. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[28]  K. Diederichs,et al.  Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. , 1998, Science.

[29]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[30]  J. Andersen,et al.  Crystal structures of a nitric oxide transport protein from a blood-sucking insect , 1998, Nature Structural Biology.

[31]  C. Beaumont,et al.  Function and regulation of transferrin and ferritin. , 1998, Seminars in hematology.

[32]  L. Lally The CCP 4 Suite — Computer programs for protein crystallography , 1998 .

[33]  Y. Chen,et al.  Complex formation between a formyl peptide and 24p3 protein with a blocked N-terminus of pyroglutamate. , 2009, The journal of peptide research : official journal of the American Peptide Society.

[34]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[35]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[36]  P. Harrison,et al.  The ferritins: molecular properties, iron storage function and cellular regulation. , 1996, Biochimica et biophysica acta.

[37]  P. Kuzmič,et al.  Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. , 1996, Analytical biochemistry.

[38]  D. A. Dougherty,et al.  Cation-π Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp , 1996, Science.

[39]  J. Neilands,et al.  Siderophores: Structure and Function of Microbial Iron Transport Compounds (*) , 1995, The Journal of Biological Chemistry.

[40]  J M Thornton,et al.  LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. , 1995, Protein engineering.

[41]  H. Sengeløv,et al.  Molecular cloning and expression of a cDNA encoding NGAL: a lipocalin expressed in human neutrophils. , 1994, Biochemical and biophysical research communications.

[42]  L. Kjeldsen,et al.  Subcellular localization and translocation of the receptor for N-formylmethionyl-leucyl-phenylalanine in human neutrophils. , 1994, The Biochemical journal.

[43]  R. Ellison The effects of lactoferrin on gram-negative bacteria. , 1994, Advances in experimental medicine and biology.

[44]  P. Williams,et al.  Iron uptake mechanisms of pathogenic bacteria. , 1993, FEMS microbiology reviews.

[45]  H. Sengeløv,et al.  Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. , 1993, The Journal of biological chemistry.

[46]  K. Raymond,et al.  Coordination chemistry of microbial iron transport. 49. The vanadium(IV) enterobactin complex: structural, spectroscopic, and electrochemical characterization , 1993 .

[47]  H. Tschesche,et al.  A 25 kDa α2‐microglobulin‐related protein is a component of the 125 kDa form of human gelatinase , 1992, FEBS letters.

[48]  D. Maclaren,et al.  Transferrins and heme-compounds as iron sources for pathogenic bacteria. , 1992, Critical reviews in microbiology.

[49]  K. Raymond,et al.  Solution equilibria of enterobactin and metal-enterobactin complexes , 1991 .

[50]  M. A. Saper,et al.  The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens , 1987, Nature.

[51]  C. Craven,et al.  Tissue distribution and clearance kinetics of non-transferrin-bound iron in the hypotransferrinemic mouse: a rodent model for hemochromatosis. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[52]  K. Raymond,et al.  Complexation of iron by siderophores a review of their solution and structural chemistry and biological function , 1984 .

[53]  E. Weinberg Iron withholding: a defense against infection and neoplasia. , 1984, Physiological reviews.

[54]  M. Mcintosh,et al.  Kinetics of Biosynthesis of Iron-Regulated Membrane Proteins in Escherichia coli , 1982, Journal of bacteriology.

[55]  J. Neilands Microbial iron compounds. , 1981, Annual review of biochemistry.

[56]  A. Cerami,et al.  Low molecular weight iron-binding factor from mammalian tissue that potentiates bacterial growth , 1980, The Journal of experimental medicine.

[57]  E. Rachmilewitz,et al.  Non‐Specific Serum Iron in Thalassaemia: an Abnormal Serum Iron Fraction of Potential Toxicity , 1978, British journal of haematology.

[58]  J. A. Fernandez-Pol Isolation and characterization of a siderophore-like growth factor from mutants of SV40-transformed cells adapted to picolinic acid , 1978, Cell.

[59]  F. Gibson,et al.  The structure of enterochelin and related 2,3-dihydroxy-N-benzoylserine conjugates from Escherichia coli. , 1970, Biochimica et biophysica acta.

[60]  J. Neilands,et al.  Enterobactin, an iron transport compound from Salmonella typhimurium. , 1970, Biochemical and biophysical research communications.

[61]  F. Gibson,et al.  The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62-1 , 1969 .

[62]  R. Roberts Studies of biosynthesis in escherichia coli , 1955 .