Device Engineering for Highly Efficient Top‐Illuminated Organic Solar Cells with Microcavity Structures

Small-molecule organic solar cells with microcavity structures utilizing very thin solar-absorbing active layers are simulated and fabricated. By carefully fine-tuning the in-cell spacer layer and out-of-cell capping layer, highly efficient top-illuminated indium tin oxide-free solar cells are created on glass and flexible polyethylene terephthalate substrates with efficiencies of up to 5.5% and 5%, respectively.

[1]  Chihaya Adachi,et al.  Top Light-Harvesting Organic Solar Cell Using Ultrathin Ag/MgAg Layer as Anode , 2007 .

[2]  K. Leo,et al.  Increase in internal quantum efficiency in small molecular oligothiophene: C60 mixed heterojunction solar cells by substrate heating , 2010 .

[3]  John R. Reynolds,et al.  Transparent, Conductive Carbon Nanotube Films , 2004, Science.

[4]  J. Meiss,et al.  Efficient semitransparent small-molecule organic solar cells , 2009 .

[5]  M. Weil,et al.  Dicyanovinyl–Substituted Oligothiophenes: Structure‐Property Relationships and Application in Vacuum‐Processed Small Molecule Organic Solar Cells , 2011 .

[6]  Sungjun Kim,et al.  BCP/Ag/MoO3 Transparent Cathodes for Organic Photovoltaics , 2011 .

[7]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[8]  Max Shtein,et al.  Enhanced optical field intensity distribution in organic photovoltaic devices using external coatings , 2006 .

[9]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[10]  L. S. Roman,et al.  Modeling photocurrent action spectra of photovoltaic devices based on organic thin films , 1999 .

[11]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[12]  S. Forrest,et al.  Arylamine-based squaraine donors for use in organic solar cells. , 2011, Nano letters.

[13]  S. Chua,et al.  A mechanical assessment of flexible optoelectronic devices , 2001 .

[14]  Stephen R. Forrest,et al.  A Hybrid Planar–Mixed Molecular Heterojunction Photovoltaic Cell , 2005 .

[15]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[16]  Yihong Chen,et al.  A low-energy-gap organic dye for high-performance small-molecule organic solar cells. , 2011, Journal of the American Chemical Society.

[17]  Max Shtein,et al.  Transparent and conductive electrodes based on unpatterned, thin metal films , 2008 .

[18]  Garry Rumbles,et al.  Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode , 2006 .

[19]  Liangbing Hu,et al.  Organic solar cells with carbon nanotube network electrodes , 2006 .

[20]  Jiu-Haw Lee,et al.  Modification of silver anode and cathode for a top-illuminated organic photovoltaic device , 2010 .

[21]  Olle Inganäs,et al.  Interlayer for Modified Cathode in Highly Efficient Inverted ITO‐Free Organic Solar Cells , 2012, Advanced materials.

[22]  D. Hertel,et al.  Simple, Highly Efficient Vacuum‐Processed Bulk Heterojunction Solar Cells Based on Merocyanine Dyes , 2011 .

[23]  Ken-Tsung Wong,et al.  A donor-acceptor-acceptor molecule for vacuum-processed organic solar cells with a power conversion efficiency of 6.4%. , 2012, Chemical communications.

[24]  J. Meiss,et al.  Selective absorption enhancement in organic solar cells using light incoupling layers , 2010 .

[25]  Karl Leo,et al.  Optimizing the morphology of metal multilayer films for indium tin oxide (ITO)-free inverted organic solar cells , 2009 .

[26]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[27]  Yi Cui,et al.  Solution-processed metal nanowire mesh transparent electrodes. , 2008, Nano letters.

[28]  Ken‐Tsung Wong,et al.  New A-A-D-A-A-type electron donors for small molecule organic solar cells. , 2011, Organic letters.

[29]  F. Liu,et al.  Efficient polymer photovoltaic cells using solution-processed MoO3 as anode buffer layer , 2010 .

[30]  Karl Leo,et al.  Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes , 2009 .

[31]  S. Darling,et al.  Ultrathin molybdenum oxide anode buffer layer for organic photovoltaic cells formed using atomic layer deposition , 2012 .

[32]  Sei‐Yong Kim,et al.  Enhancement of the short circuit current in organic photovoltaic devices with microcavity structures , 2010 .

[33]  A. Oliva,et al.  Surface and grain boundary contributions in the electrical resistivity of metallic nanofilms , 2006 .

[34]  Yoshiharu Sato,et al.  Columnar structure in bulk heterojunction in solution-processable three-layered p-i-n organic photovoltaic devices using tetrabenzoporphyrin precursor and silylmethyl[60]fullerene. , 2009, Journal of the American Chemical Society.

[35]  Yihong Chen,et al.  A new donor-acceptor molecule with uniaxial anisotropy for efficient vacuum-deposited organic solar cells. , 2011, Chemical communications.

[36]  J. Meiss,et al.  Improved light harvesting in tin-doped indum oxide (ITO)-free inverted bulk-heterojunction organic solar cells using capping layers , 2008 .