Inhibition of CO poisoning on Pt catalyst coupled with the reduction of toxic hexavalent chromium in a dual-functional fuel cell

[1]  M. Hoffmann,et al.  Electrochemical treatment of human waste coupled with molecular hydrogen production , 2014 .

[2]  A. Aryanfar,et al.  Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment. , 2014, Environmental science & technology.

[3]  A. E. Greenberg,et al.  Standard Methods for the Examination of Water and Wastewater seventh edition , 2013 .

[4]  Y. Sung,et al.  Correlation between platinum nanoparticle surface rearrangement induced by heat treatment and activity for an oxygen reduction reaction. , 2013, Physical chemistry chemical physics : PCCP.

[5]  Shengbo Zhang,et al.  Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions , 2013 .

[6]  Jeong Jae Wie,et al.  The use of elemental sulfur as an alternative feedstock for polymeric materials. , 2013, Nature chemistry.

[7]  김성홍,et al.  Standard Methods for the Examination of Water and Wastewater, 22nd Edition, 2012 , 2012 .

[8]  Sang-Eun Bae,et al.  Bifunctional anode catalysts for direct methanol fuel cells , 2012 .

[9]  Rees B Rankin,et al.  Unique electrochemical adsorption properties of Pt-skin surfaces. , 2012, Angewandte Chemie.

[10]  Y. Sung,et al.  Methanol-tolerant cathode electrode structure composed of heterogeneous composites to overcome metha , 2011 .

[11]  A. D. Bokare,et al.  Advanced oxidation process based on the Cr(III)/Cr(VI) redox cycle. , 2011, Environmental science & technology.

[12]  A. Cuesta,et al.  Atomic ensemble effects in electrocatalysis: the site-knockout strategy. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  M. Yin,et al.  Recent advances in catalysts for direct methanol fuel cells , 2011 .

[14]  Jianbo Wu,et al.  Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. , 2011, Nano letters.

[15]  C. Murray,et al.  Size- and shape-selective synthesis of metal nanocrystals and nanowires using CO as a reducing agent. , 2010, Angewandte Chemie.

[16]  A. D. Bokare,et al.  Chromate-induced activation of hydrogen peroxide for oxidative degradation of aqueous organic pollutants. , 2010, Environmental science & technology.

[17]  Kwang S. Kim,et al.  Fullerol-titania charge-transfer-mediated photocatalysis working under visible light. , 2009, Chemistry.

[18]  Siti Kartom Kamarudin,et al.  Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices , 2009 .

[19]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[20]  W. Choi,et al.  Simultaneous conversion of dye and hexavalent chromium in visible light-illuminated aqueous solution of polyoxometalate as an electron transfer catalyst , 2008 .

[21]  Xuan Cheng,et al.  A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation , 2007 .

[22]  Donald J. Reichard,et al.  A SELECTIVE REVIEW , 2007 .

[23]  A. Cuesta,et al.  At least three contiguous atoms are necessary for CO formation during methanol electrooxidation on platinum. , 2006, Journal of the American Chemical Society.

[24]  Lei Zhang,et al.  A review of anode catalysis in the direct methanol fuel cell , 2006 .

[25]  P N Ross,et al.  The impact of geometric and surface electronic properties of pt-catalysts on the particle size effect in electrocatalysis. , 2005, The journal of physical chemistry. B.

[26]  T. Hyeon,et al.  Origin of the Enhanced Catalytic Activity of Carbon Nanocoil-Supported PtRu Alloy Electrocatalysts , 2004 .

[27]  Qingfeng Li,et al.  Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C , 2003 .

[28]  T. Iwasita Electrocatalysis of methanol oxidation , 2002 .

[29]  Jong-Ho Choi,et al.  Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation , 2002 .

[30]  Andrei V. Ruban,et al.  Anode materials for low-temperature fuel cells : A density functional theory study , 2001 .

[31]  T. Iwasita,et al.  Methanol oxidation on PtRu electrodes. Influence of surface structure and Pt-Ru atom distribution , 2000 .

[32]  Angelika Heinzel,et al.  A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells , 1999 .

[33]  S. Wasmus,et al.  Methanol oxidation and direct methanol fuel cells: a selective review 1 In honour of Professor W. Vi , 1999 .

[34]  Awwa,et al.  Standard Methods for the examination of water and wastewater , 1999 .

[35]  N. Fisher,et al.  Bioavailability of Cr(III) and Cr(VI) to marine mussels from solute and particulate pathways , 1997 .

[36]  A. Wiȩckowski,et al.  Structure of Chemisorbed Sulfur on a Pt(111) Electrode , 1997 .

[37]  Guangchao Li,et al.  Kinetics of chromate reduction by ferrous iron , 1996 .

[38]  H. Gasteiger,et al.  CO Electrooxidation on Well-Characterized Pt-Ru Alloys. , 1994 .

[39]  Hubert A. Gasteiger,et al.  Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys , 1994 .

[40]  Hubert A. Gasteiger,et al.  Methanol electrooxidation on well-characterized Pt-Ru alloys , 1993 .

[41]  D. Lovley,et al.  Dissimilatory metal reduction. , 1993, Annual review of microbiology.

[42]  J. Zachara,et al.  Environmental chemistry of chromium. , 1989, The Science of the total environment.

[43]  A. Bard,et al.  Standard Potentials in Aqueous Solution , 1985 .