Compact halo-ligand-conjugated quantum dots for multicolored single-molecule imaging of overcrowding GPCR proteins on cell membranes.

To detect single molecules within the optical diffraction limit (< ca. 200 nm), a multicolored imaging technique is developed using Halo-ligand conjugated quantum dots (Halo-QDs; <6 nm in diameter). Using three types of Halo-QDs, multicolored single-molecule fluorescence imaging of GPCR proteins in Dictyostelium cells is achieved.

[1]  Jennifer D. Whitesell,et al.  Kv2.1 Potassium Channels Are Retained within Dynamic Cell Surface Microdomains That Are Defined by a Perimeter Fence , 2006, The Journal of Neuroscience.

[2]  Masataka Kinjo,et al.  A quantum dot-based ratiometric pH sensor. , 2010, Chemical communications.

[3]  Marjeta Urh,et al.  HaloTag: a novel protein labeling technology for cell imaging and protein analysis. , 2008, ACS chemical biology.

[4]  M. Nirmal,et al.  Fluorescence intermittency in single cadmium selenide nanocrystals , 1996, Nature.

[5]  C. Joo,et al.  Advances in single-molecule fluorescence methods for molecular biology. , 2008, Annual review of biochemistry.

[6]  A. Seiyama,et al.  Molecular Sciences Preparation and Characterization of Highly Fluorescent, Glutathione-coated near Infrared Quantum Dots for in Vivo Fluorescence Imaging , 2022 .

[7]  A. Seiyama,et al.  Gd3+-functionalized near-infrared quantum dots for in vivo dual modal (fluorescence/magnetic resonance) imaging. , 2008, Chemical communications.

[8]  Paul W Wiseman,et al.  Membrane lateral diffusion and capture of CFTR within transient confinement zones. , 2006, Biophysical journal.

[9]  M. Dahan,et al.  Probing cellular events, one quantum dot at a time , 2010, Nature Methods.

[10]  J. Rao,et al.  HaloTag protein-mediated specific labeling of living cells with quantum dots. , 2008, Biochemical and biophysical research communications.

[11]  M. Tamkun,et al.  A cytoskeletal-based perimeter fence selectively corrals a sub-population of cell surface Kv2.1 channels , 2007, Journal of Cell Science.

[12]  J. Matthew Mauro,et al.  Long-term multiple color imaging of live cells using quantum dot bioconjugates , 2003, Nature Biotechnology.

[13]  P. Devreotes,et al.  A chemoattractant receptor controls development in Dictyostelium discoideum. , 1988, Science.

[14]  Philip S Low,et al.  Imaging of the diffusion of single band 3 molecules on normal and mutant erythrocytes. , 2009, Blood.

[15]  Philippe Rostaing,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking , 2003, Science.

[16]  Tomonobu M. Watanabe,et al.  Article Synthesis and Characterization of Anti-HER2 Antibody Conjugated CdSe/CdZnS Quantum Dots for Fluorescence Imaging of Breast Cancer Cells , 2009 .

[17]  M. Stroscio,et al.  Altered membrane dynamics of quantum dot-conjugated integrins during osteogenic differentiation of human bone marrow derived progenitor cells. , 2007, Biophysical journal.

[18]  T. Sakata,et al.  Aqueous synthesis of glutathione-coated PbS quantum dots with tunable emission for non-invasive fluorescence imaging in the second near-infrared biological window (1000-1400 nm). , 2013, Chemical Communications.

[19]  M. Ueda,et al.  Single-molecule imaging techniques to visualize chemotactic signaling events on the membrane of living Dictyostelium cells. , 2009, Methods in molecular biology.

[20]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[21]  Maxime Dahan,et al.  Asymmetric redistribution of GABA receptors during GABA gradient sensing by nerve growth cones analyzed by single quantum dot imaging , 2007, Proceedings of the National Academy of Sciences.

[22]  Tatsuya Ohyanagi,et al.  Bioluminescence resonance energy transfer coupled near-infrared quantum dots using GST-tagged luciferase for in vivo imaging. , 2013, Chemical communications.

[23]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[24]  M. Kinjo,et al.  Bovine serum albumin-coated quantum dots as a cytoplasmic viscosity probe in a single living cell , 2012 .

[25]  M. Ueda,et al.  Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging. , 2012, Biophysical journal.

[26]  Dhermendra K. Tiwari,et al.  Smart fluorescent proteins: Innovation for barrier‐free superresolution imaging in living cells , 2013, Development, growth & differentiation.

[27]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[28]  Shingo Fukui,et al.  Real-time nanoscopy by using blinking enhanced quantum dots. , 2010, Biophysical journal.

[29]  J. Post,et al.  Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction , 2004, Nature Biotechnology.

[30]  M. Howarth,et al.  Quantum dot targeting with lipoic acid ligase and HaloTag for single-molecule imaging on living cells. , 2012, ACS nano.

[31]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[32]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[33]  T. Yanagida,et al.  Single-Molecule Analysis of Chemotactic Signaling in Dictyostelium Cells , 2001, Science.

[34]  S. Gambhir,et al.  HaloTag protein-mediated site-specific conjugation of bioluminescent proteins to quantum dots. , 2006, Angewandte Chemie.

[35]  K. Jacobson,et al.  Single-particle tracking: applications to membrane dynamics. , 1997, Annual review of biophysics and biomolecular structure.