Lower bounds of concurrence for N-qubit systems and the detection of k-nonseparability of multipartite quantum systems
暂无分享,去创建一个
Ting Gao | Fengli Yan | Xianfei Qi | T. Gao | Fengli Yan | Xianfei Qi
[1] Barry C. Sanders,et al. Dual monogamy inequality for entanglement , 2007 .
[2] T. Gao,et al. Efficient k-separability criteria for mixed multipartite quantum states , 2012, 1204.2864.
[3] S. Luo,et al. Detecting k -nonseparability via quantum Fisher information , 2015 .
[4] S. Fei,et al. Concurrence of arbitrary dimensional bipartite quantum states. , 2005, Physical review letters.
[5] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[6] M. Huber,et al. Criterion for K-separability in mixed multipartite states , 2010, 1002.2953.
[7] W. Wootters. Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.
[8] N. Christensen,et al. Potential multiparticle entanglement measure , 2000, quant-ph/0010052.
[9] J. Siewert,et al. Monogamy equalities for qubit entanglement from Lorentz invariance. , 2014, Physical review letters.
[10] Simone Severini,et al. Improved lower bounds on genuine-multipartite-entanglement concurrence , 2012, 1205.3057.
[11] O. Gühne,et al. Estimating entanglement monotones with a generalization of the Wootters formula. , 2012, Physical review letters.
[12] J. Siewert,et al. Quantifying entanglement resources , 2014, 1402.6710.
[13] Isaac L. Chuang,et al. Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .
[14] J. Cirac,et al. Classification of multiqubit mixed states: Separability and distillability properties , 1999, quant-ph/9911044.
[15] M. Kus,et al. Concurrence of mixed bipartite quantum states in arbitrary dimensions. , 2004, Physical review letters.
[16] Florian Mintert,et al. Measuring multipartite concurrence with a single factorizable observable. , 2006, Physical review letters.
[17] Andreas Buchleitner,et al. Decoherence and multipartite entanglement. , 2004, Physical review letters.
[18] Julio I. de Vicente,et al. Lower bounds on concurrence and separability conditions , 2006, quant-ph/0611229.
[19] G. Tóth,et al. Entanglement detection , 2008, 0811.2803.
[20] F. Verstraete,et al. General monogamy inequality for bipartite qubit entanglement. , 2005, Physical review letters.
[21] W. Wootters,et al. Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.
[22] Guang-Can Guo,et al. Optimal entanglement witnesses based on local orthogonal observables , 2007, 0705.1832.
[23] Pramod S. Joag,et al. Separability criterion for multipartite quantum states based on the Bloch representation of density matrices , 2007, Quantum Inf. Comput..
[24] T. Gao,et al. Detection of genuinely entangled and nonseparable n-partite quantum states , 2010, 1007.4493.
[25] M. Lewenstein,et al. Quantum Entanglement , 2020, Quantum Mechanics.
[26] T. Gao,et al. Measure of multipartite entanglement with computable lower bounds , 2012, 1206.6669.
[27] S. Luo,et al. Detectingk-nonseparability via local uncertainty relations , 2016 .
[28] W. Wootters,et al. Distributed Entanglement , 1999, quant-ph/9907047.
[29] Ting Gao,et al. Separability criteria via sets of mutually unbiased measurements , 2015, Scientific Reports.
[30] Gilad Gour,et al. qu an tph ] 1 4 Ju l 2 01 0 All Maximally Entangled Four Qubits States , 2010 .
[31] Jing-Ling Chen,et al. Measure of genuine multipartite entanglement with computable lower bounds , 2011, 1101.2001.
[32] C. Caves,et al. Explicit product ensembles for separable quantum states , 1999, quant-ph/9904109.
[33] T. Gao,et al. Separability criteria for several classes of n-partite quantum states , 2010, 1006.4516.
[34] G. Milburn,et al. Universal state inversion and concurrence in arbitrary dimensions , 2001, quant-ph/0102040.
[35] Terhal,et al. Entanglement of formation for isotropic states , 2000, Physical review letters.
[36] Barry C. Sanders,et al. Duality for monogamy of entanglement , 2006, quant-ph/0606168.
[37] C. Caves,et al. Concurrence-based entanglement measures for isotropic states , 2003 .
[38] Shao-Ming Fei,et al. Lower bounds of concurrence for tripartite quantum systems , 2006 .
[39] R. Werner,et al. Entanglement measures under symmetry , 2000, quant-ph/0010095.
[40] E. Gerjuoy. Lower bound on entanglement of formation for the qubit-qudit system , 2003, quant-ph/0301015.
[41] Xianqing Li-Jost,et al. Genuine multipartite entanglement detection and lower bound of multipartite concurrence , 2015, 1512.08845.
[42] Xianqing Li-Jost,et al. Lower bound on concurrence and distillation for arbitrary-dimensional bipartite quantum states , 2011, 1112.5509.
[43] Xue-Na Zhu,et al. Lower bound of concurrence for qubit systems , 2014, Quantum Inf. Process..