Feature Generation for Adaptive Gradient‐Domain Path Tracing

In this paper, we propose a new technique to incorporate recent adaptive rendering approaches built upon local regression theory into a gradient‐domain path tracing framework, in order to achieve high‐quality rendering results. Our method aims to reduce random artifacts introduced by random sampling on image colors and gradients. Our high‐level approach is to identify a feature image from noisy gradients, and pass the image to an existing local regression based adaptive method so that adaptive sampling and reconstruction using our feature can boost the performance of gradient‐domain rendering. To fulfill our idea, we derive an ideal feature in the form of image gradients and propose an estimation process for the ideal feature in the presence of noise in image gradients. We demonstrate that our integrated adaptive solution leads to performance improvement for a gradient‐domain path tracer, by seamlessly incorporating recent adaptive sampling and reconstruction strategies through our estimated feature.

[1]  Matthias Zwicker,et al.  Robust Denoising using Feature and Color Information , 2013, Comput. Graph. Forum.

[2]  Donald P. Greenberg,et al.  A perceptually based physical error metric for realistic image synthesis , 1999, SIGGRAPH.

[3]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[4]  Cyril Soler,et al.  A Local Frequency Analysis of Light Scattering and Absorption , 2014, ACM Trans. Graph..

[5]  Soheil Darabi,et al.  On filtering the noise from the random parameters in Monte Carlo rendering , 2012, TOGS.

[6]  Jaakko Lehtinen,et al.  Temporal gradient-domain path tracing , 2016, ACM Trans. Graph..

[7]  Michael F. Cohen,et al.  Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems , 2008, ECCV.

[8]  Jaakko Lehtinen,et al.  Gradient-domain metropolis light transport , 2013, ACM Trans. Graph..

[9]  Steven McDonagh,et al.  Adaptive polynomial rendering , 2016, ACM Trans. Graph..

[10]  Bochang Moon,et al.  Adaptive Rendering Based on Weighted Local Regression , 2014, ACM Trans. Graph..

[11]  W. Cleveland,et al.  Smoothing by Local Regression: Principles and Methods , 1996 .

[12]  Matthias Zwicker,et al.  Regularizing Image Reconstruction for Gradient‐Domain Rendering with Feature Patches , 2016, Comput. Graph. Forum.

[13]  Patrick Pérez,et al.  Poisson image editing , 2003, ACM Trans. Graph..

[14]  Aseem Agarwala,et al.  Efficient gradient-domain compositing using quadtrees , 2007, ACM Trans. Graph..

[15]  Matthias Zwicker,et al.  Adaptive sampling and reconstruction using greedy error minimization , 2011, ACM Trans. Graph..

[16]  Sumanta N. Pattanaik,et al.  Radiance caching for efficient global illumination computation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[17]  Kenny Mitchell,et al.  Adaptive rendering with linear predictions , 2015, ACM Trans. Graph..

[18]  Kenny Mitchell,et al.  Nonlinearly Weighted First‐order Regression for Denoising Monte Carlo Renderings , 2016, Comput. Graph. Forum.

[19]  M. Wand,et al.  Multivariate Locally Weighted Least Squares Regression , 1994 .

[20]  Frédo Durand,et al.  A frequency analysis of light transport , 2005, SIGGRAPH '05.

[21]  Jaakko Lehtinen,et al.  Gradient-domain path tracing , 2015, ACM Trans. Graph..

[22]  Paul S. Heckbert,et al.  Irradiance gradients , 2008, SIGGRAPH '08.

[23]  Jaakko Lehtinen,et al.  Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering , 2015, Comput. Graph. Forum.

[24]  Jan Novák,et al.  Image-space control variates for rendering , 2016, ACM Trans. Graph..

[25]  Matthias Zwicker,et al.  Radiance caching for participating media , 2008, TOGS.

[26]  Ethem Alpaydin,et al.  Introduction to Machine Learning (Adaptive Computation and Machine Learning) , 2004 .