DIMINUTO 1 affects the lignin profile and secondary cell wall formation in Arabidopsis

[1]  Xuelu Wang,et al.  Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis , 2011, Journal of experimental botany.

[2]  R. Dixon,et al.  Transcriptional networks for lignin biosynthesis: more complex than we thought? , 2011, Trends in plant science.

[3]  Monica A. Schmidt,et al.  Silencing of Soybean Seed Storage Proteins Results in a Rebalanced Protein Composition Preserving Seed Protein Content without Major Collateral Changes in the Metabolome and Transcriptome[W][OA] , 2011, Plant Physiology.

[4]  S. Persson,et al.  Cellulose synthases and synthesis in Arabidopsis. , 2011, Molecular plant.

[5]  Marilyn F. Slininger,et al.  Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment , 2010, Biotechnology for biofuels.

[6]  C. Chapple,et al.  The genetics of lignin biosynthesis: connecting genotype to phenotype. , 2010, Annual review of genetics.

[7]  Martin Bringmann,et al.  Identification of a cellulose synthase-associated protein required for cellulose biosynthesis , 2010, Proceedings of the National Academy of Sciences.

[8]  Staffan Persson,et al.  Phytohormones and the cell wall in Arabidopsis during seedling growth. , 2010, Trends in plant science.

[9]  M. Pauly,et al.  Comprehensive Compositional Analysis of Plant Cell Walls (Lignocellulosic biomass) Part II: Carbohydrates , 2010, Journal of Visualized Experiments.

[10]  Markus Pauly,et al.  Comprehensive Compositional Analysis of Plant Cell Walls (Lignocellulosic biomass) Part I: Lignin , 2010, Journal of visualized experiments : JoVE.

[11]  Thomas Lübberstedt,et al.  From dwarves to giants? Plant height manipulation for biomass yield. , 2009, Trends in plant science.

[12]  K. Schrick,et al.  Mutations in UDP-Glucose:Sterol Glucosyltransferase in Arabidopsis Cause Transparent Testa Phenotype and Suberization Defect in Seeds1[C][W][OA] , 2009, Plant Physiology.

[13]  T. Teeri,et al.  Plasma membrane microdomains from hybrid aspen cells are involved in cell wall polysaccharide biosynthesis. , 2009, The Biochemical journal.

[14]  T. Demura,et al.  Identifying New Components Participating in the Secondary Cell Wall Formation of Vessel Elements in Zinnia and Arabidopsis[W] , 2009, The Plant Cell Online.

[15]  P. Puigdoménech,et al.  The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana , 2009, Plant Molecular Biology.

[16]  Takashi Aoyama,et al.  A Genetic Framework for the Control of Cell Division and Differentiation in the Root Meristem , 2008, Science.

[17]  Jing-Ke Weng,et al.  Improvement of biomass through lignin modification. , 2008, The Plant journal : for cell and molecular biology.

[18]  P. Ferrer,et al.  ZmXTH1, a new xyloglucan endotransglucosylase/hydrolase in maize, affects cell wall structure and composition in Arabidopsis thaliana. , 2008, Journal of experimental botany.

[19]  C. Hardtke Transcriptional auxin–brassinosteroid crosstalk: Who's talking? , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[20]  R. Zhong,et al.  Arabidopsis irregular xylem8 and irregular xylem9: Implications for the Complexity of Glucuronoxylan Biosynthesis[W] , 2007, The Plant Cell Online.

[21]  Staffan Persson,et al.  The Arabidopsis irregular xylem8 Mutant Is Deficient in Glucuronoxylan and Homogalacturonan, Which Are Essential for Secondary Cell Wall Integrity[W] , 2007, The Plant Cell Online.

[22]  Chris Somerville,et al.  Cellulose synthesis in higher plants. , 2006, Annual review of cell and developmental biology.

[23]  Ho Bang Kim,et al.  The Regulation of DWARF4 Expression Is Likely a Critical Mechanism in Maintaining the Homeostasis of Bioactive Brassinosteroids in Arabidopsis1 , 2006, Plant Physiology.

[24]  J. Damborský,et al.  Biosynthesis and metabolism , 2006, Biologia Plantarum.

[25]  D. Cosgrove Growth of the plant cell wall , 2005, Nature Reviews Molecular Cell Biology.

[26]  Joanne Chory,et al.  Molecular mechanisms of steroid hormone signaling in plants. , 2005, Annual review of cell and developmental biology.

[27]  C. Müssig,et al.  Brassinosteroid-Promoted Growth , 2005, Plant biology.

[28]  Filip Vandenbussche,et al.  Of light and length: Regulation of hypocotyl growth in Arabidopsis , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[29]  K. Halliday Plant Hormones: The Interplay of Brassinosteroids and Auxin , 2004, Current Biology.

[30]  T. Mockler,et al.  Interdependency of Brassinosteroid and Auxin Signaling in Arabidopsis , 2004, PLoS biology.

[31]  K. Schrick,et al.  A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis. , 2004, The Plant journal : for cell and molecular biology.

[32]  A. Polle,et al.  Comparison of Different Methods for Lignin Determination as a Basis for Calibration of Near-Infrared Reflectance Spectroscopy and Implications of Lignoproteins , 2002, Journal of Chemical Ecology.

[33]  E. Liscum,et al.  Genetics of Aux/IAA and ARF action in plant growth and development , 2002, Plant Molecular Biology.

[34]  U. Grossniklaus,et al.  A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta[w] , 2003, Plant Physiology.

[35]  A. Moorman,et al.  Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data , 2003, Neuroscience Letters.

[36]  S. Fujioka,et al.  Biosynthesis and metabolism of brassinosteroids. , 1997, Annual review of plant biology.

[37]  W. Boerjan,et al.  Lignin biosynthesis. , 2003, Annual review of plant biology.

[38]  P. Lerouge,et al.  KOBITO1 Encodes a Novel Plasma Membrane Protein Necessary for Normal Synthesis of Cellulose during Cell Expansion in Arabidopsis Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.002873. , 2002, The Plant Cell Online.

[39]  Dirk Inzé,et al.  GATEWAY vectors for Agrobacterium-mediated plant transformation. , 2002, Trends in plant science.

[40]  D. Delmer,et al.  Sitosterol-β-glucoside as Primer for Cellulose Synthesis in Plants , 2002, Science.

[41]  F. Speleman,et al.  Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes , 2002, Genome Biology.

[42]  P. Benfey,et al.  COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. , 2001, Genes & development.

[43]  M. Catterou,et al.  Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. II. Effects of brassinosteroids on microtubules and cell elongation in the bul1 mutant , 2001, Planta.

[44]  Y. Nakamura,et al.  Role of the putative membrane-bound endo-1,4-beta-glucanase KORRIGAN in cell elongation and cellulose synthesis in Arabidopsis thaliana. , 2001, Plant & cell physiology.

[45]  S. Clouse Plant development: A role for sterols in embryogenesis , 2000, Current Biology.

[46]  B. Gregory,et al.  The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. , 1999, Plant physiology.

[47]  S. Clough,et al.  Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. , 1998, The Plant journal : for cell and molecular biology.

[48]  N. Chua,et al.  The Arabidopsis DIMINUTO/DWARF1 Gene Encodes a Protein Involved in Steroid Synthesis , 1998, Plant Cell.

[49]  W Herth,et al.  Molecular analysis of cellulose biosynthesis in Arabidopsis. , 1998, Science.

[50]  G. Britton,et al.  Biosynthesis and metabolism , 1998 .

[51]  J. Chory,et al.  The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. , 1997, The Plant cell.

[52]  S. Clouse,et al.  A Brassinosteroid-Insensitive Mutant in Arabidopsis thaliana Exhibits Multiple Defects in Growth and Development , 1996, Plant physiology.

[53]  C. Koncz,et al.  Genetic evidence for an essential role of brassinosteroids in plant development , 1996 .

[54]  F. Nagy,et al.  Brassinosteroids Rescue the Deficiency of CYP90, a Cytochrome P450, Controlling Cell Elongation and De-etiolation in Arabidopsis , 1996, Cell.

[55]  S. Fry,et al.  Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. , 1995, The Plant cell.

[56]  A. Gasch,et al.  The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. , 1995, Genes & development.

[57]  M. Estelle,et al.  Genetic approaches to auxin action. , 1994, Plant, cell & environment.

[58]  W. Gray Hormonal Regulation of Plant Growth and Development , 2004, Advances in Agricultural Biotechnology.

[59]  C. Lapierre,et al.  Thioacidolysis of Lignin: Comparison with Acidolysis , 1985 .

[60]  S. Purohit Hormonal Regulation of Plant Growth and Development: Problems and Perspectives , 1985 .

[61]  D. Updegraff Semimicro determination of cellulose in biological materials. , 1969, Analytical biochemistry.