Quantum circuits with uniformly controlled one-qubit gates (7 pages)
暂无分享,去创建一个
[1] Goong Chen,et al. Mathematics of Quantum Computation , 2002 .
[2] Tad Hogg,et al. TOOLS FOR QUANTUM ALGORITHMS , 1999 .
[3] T. Spiller,et al. Two-electron quantum dots as scalable qubits , 2002, quant-ph/0206075.
[4] J. Vartiainen,et al. Efficient decomposition of quantum gates. , 2003, Physical review letters.
[5] Igor L. Markov,et al. Asymptotically optimal circuits for arbitrary n-qubit diagonal comutations , 2004, Quantum Inf. Comput..
[6] L. Vandersypen,et al. NMR techniques for quantum control and computation , 2004, quant-ph/0404064.
[8] Jun Zhang,et al. Exact two-qubit universal quantum circuit. , 2003, Physical review letters.
[9] Colin P. Williams,et al. Optimal quantum circuits for general two-qubit gates (5 pages) , 2003, quant-ph/0308006.
[10] Mikko Möttönen,et al. Quantum circuits for general multiqubit gates. , 2004, Physical review letters.
[11] Igor L. Markov,et al. Minimal universal two-qubit controlled-NOT-based circuits (8 pages) , 2004 .
[12] G. Vidal,et al. Universal quantum circuit for two-qubit transformations with three controlled-NOT gates , 2003, quant-ph/0307177.
[13] D. Deutsch. Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[14] Lloyd,et al. Almost any quantum logic gate is universal. , 1995, Physical review letters.
[15] W. Zurek. Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.
[16] Jens Siewert,et al. Programmable networks for quantum algorithms. , 2003, Physical review letters.
[17] A. Galindo,et al. Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.
[18] Barenco,et al. Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.