Adaptive Parameter Selection for Total Variation Image Deconvolution

In this paper, we propose a discrepancy rule-based method to automatically choose the regularization parameters for total variation image restoration problems. The regularization parameters are adjusted dynamically in each iteration. Numerical results are shown to illustrate the performance of the proposed method. AMS subject classifications: 65K10, 68U10

[1]  Michael K. Ng,et al.  A Fast Total Variation Minimization Method for Image Restoration , 2008, Multiscale Model. Simul..

[2]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[3]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[4]  Antonin Chambolle,et al.  A l1-Unified Variational Framework for Image Restoration , 2004, ECCV.

[5]  Michael K. Ng,et al.  On Semismooth Newton’s Methods for Total Variation Minimization , 2007, Journal of Mathematical Imaging and Vision.

[6]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[7]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[8]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing, 2nd Edition , 1999 .

[9]  José M. Bioucas-Dias,et al.  Adaptive total variation image deconvolution: A majorization-minimization approach , 2006, 2006 14th European Signal Processing Conference.

[10]  Raymond H. Chan,et al.  A Fast Algorithm for Deblurring Models with Neumann Boundary Conditions , 1999, SIAM J. Sci. Comput..

[11]  F. Hoog A new algorithm for solving Toeplitz systems of equations , 1987 .

[12]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[13]  Lothar Reichel,et al.  A new zero-finder for Tikhonov regularization , 2008 .

[14]  V. A. Morozov,et al.  Methods for Solving Incorrectly Posed Problems , 1984 .

[15]  Nikolas P. Galatsanos,et al.  Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation , 1992, IEEE Trans. Image Process..

[16]  Hong Liu,et al.  A hybrid algorithm for spatial and wavelet domain image restoration , 2005, Visual Communications and Image Processing.

[17]  D. Calvetti,et al.  Tikhonov Regularization of Large Linear Problems , 2003 .

[18]  Youwei. Wen,et al.  Fast solvers for Toeplitz systems with applications to image restoration , 2006 .

[19]  Michael K. Ng,et al.  Iterative Algorithms Based on Decoupling of Deblurring and Denoising for Image Restoration , 2008, SIAM J. Sci. Comput..

[20]  Ke Chen,et al.  An Optimization-Based Multilevel Algorithm for Total Variation Image Denoising , 2006, Multiscale Model. Simul..

[21]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[22]  José M. Bioucas-Dias,et al.  Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors , 2006, IEEE Transactions on Image Processing.

[23]  Richard G. Baraniuk,et al.  ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems , 2004, IEEE Transactions on Signal Processing.

[24]  Aggelos K. Katsaggelos,et al.  Parameter Estimation in TV Image Restoration Using Variational Distribution Approximation , 2008, IEEE Transactions on Image Processing.

[25]  S. Mallat A wavelet tour of signal processing , 1998 .

[26]  Robert D. Nowak,et al.  Wavelet-vaguelette restoration in photon-limited imaging , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[27]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[28]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .