Intuitionistic fuzzy generators Application to intuitionistic fuzzy complementation

Abstract In this paper from the definition of intuitionistic fuzzy sets we analyze the complementation in these sets. We begin by defining the intuitionistic fuzzy generators and the particular cases for which this definition coincides with the fuzzy complementation. Afterwards, we study the existence of the equilibrium points, dual points and we present different characterization theorems of intuitionistic fuzzy generators. By means of these theorems we can generate an unlimited number of intuitionistic fuzzy generators. Lastly, we present a way of constructing intuitionistic fuzzy sets from a fuzzy set and the intuitionistic fuzzy generators. The definition of intuitionistic fuzzy generator and the method of construction presented leads us in a natural way to define (ϕ 1 ,ϕ 2 ) -intuitionistic fuzzy sets obtaining from them, as a particular case, intuitionistic fuzzy sets. We conclude defining the intuitionistic fuzzy complementations and seeing how these recover the fuzzy complementations. We also study the complementary of an intuitionistic fuzzy set from the intuitionistic fuzzy generators.

[1]  Humberto Bustince,et al.  Construction theorems for intuitionistic fuzzy sets , 1996, Fuzzy Sets Syst..

[2]  Richard Bellman,et al.  On the Analytic Formalism of the Theory of Fuzzy Sets , 1973, Inf. Sci..

[3]  L. Valverde,et al.  On Some Logical Connectives for Fuzzy Sets Theory , 1983 .

[4]  Robert Lowen,et al.  On fuzzy complements , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[5]  Lotfi A. Zadeh,et al.  Similarity relations and fuzzy orderings , 1971, Inf. Sci..

[6]  Humberto Bustince Sola Conjuntos intuicionistas e intervalo-valorados difusos: propiedades y construccion. Relaciones intuicionistas y estructuras , 1994 .

[7]  Ronald R. Yager,et al.  On the Measure of Fuzziness and Negation. II. Lattices , 1980, Inf. Control..

[8]  M. Sugeno,et al.  A MODEL OF LEARNING BASED ON FUZZY INFORMATION , 1977 .

[9]  W.-L. Gau,et al.  Vague sets , 1993, IEEE Trans. Syst. Man Cybern..

[10]  R. Yager ON THE MEASURE OF FUZZINESS AND NEGATION Part I: Membership in the Unit Interval , 1979 .

[11]  E. Trillas Sobre funciones de negación en la teoría de conjuntos difusos. , 1979 .

[12]  Liu Dsosu,et al.  Fuzzy random measure and its extension theorem , 1983 .

[13]  Humberto Bustince,et al.  Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets , 1996, Fuzzy Sets Syst..

[14]  Humberto Bustince,et al.  Correlation of interval-valued intuitionistic fuzzy sets , 1995, Fuzzy Sets Syst..

[15]  S. Ovchinnikov General negations in fuzzy set theory , 1983 .

[16]  M. Sugeno FUZZY MEASURES AND FUZZY INTEGRALS—A SURVEY , 1993 .

[17]  Humberto Bustince,et al.  Vague sets are intuitionistic fuzzy sets , 1996, Fuzzy Sets Syst..

[18]  S. Weber A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms , 1983 .

[19]  Shyi-Ming Chen,et al.  Handling multicriteria fuzzy decision-making problems based on vague set theory , 1994 .

[20]  S. Ovchinnikov STRUCTURE OF FUZZY BINARY RELATIONS , 1981 .

[21]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .