Modeling of Energy Demand in the Greenhouse Using PSO-GA Hybrid Algorithms

Modeling of energy demand in agricultural greenhouse is very important to maintain optimum inside environment for plant growth and energy consumption decreasing. This paper deals with the identification parameters for physical model of energy demand in the greenhouse using hybrid particle swarm optimization and genetic algorithms technique (HPSO-GA). HPSO-GA is developed to estimate the indistinct internal parameters of greenhouse energy model, which is built based on thermal balance. Experiments were conducted to measure environment and energy parameters in a cooling greenhouse with surface water source heat pump system, which is located in mid-east China. System identification experiments identify model parameters using HPSO-GA such as inertias and heat transfer constants. The performance of HPSO-GA on the parameter estimation is better than GA and PSO. This algorithm can improve the classification accuracy while speeding up the convergence process and can avoid premature convergence. System identification results prove that HPSO-GA is reliable in solving parameter estimation problems for modeling the energy demand in the greenhouse.

[1]  Zhongbo Zhang,et al.  An adaptive particle swarm optimization algorithm for reservoir operation optimization , 2014, Appl. Soft Comput..

[2]  Alvaro Marucci,et al.  Energy Efficiency of a Greenhouse for the Conservation of Forestry Biodiversity , 2013 .

[3]  Silke Hemming,et al.  Simple greenhouse climate model as a design tool for greenhouses in tropical lowland , 2007 .

[5]  Amanpreet Singh,et al.  Modeling and evaluation of greenhouse for floriculture in subtropics , 2010 .

[6]  G.P.A. Bot,et al.  PHYSICAL MODELING OF GREENHOUSE CLIMATE , 1991 .

[7]  G. Bot,et al.  Chapter 2 – PHYSICAL MODELLING OF GREENHOUSE CLIMATE , 1993 .

[8]  Antonio Ramírez-Treviño,et al.  Greenhouse Modeling Using Continuous Timed Petri Nets , 2013 .

[9]  J. Boaventura Cunha,et al.  Greenhouse air temperature predictive control using the particle swarm optimisation algorithm , 2005 .

[10]  Chen Li,et al.  SA-ANN-Based Slag Carry-Over Detection Method and the Embedded WME Platform , 2013, IEEE Transactions on Industrial Electronics.

[11]  Pandian Vasant,et al.  Optimization of nonlinear geological structure mapping using hybrid neuro-genetic techniques , 2011, Math. Comput. Model..

[12]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[13]  Xavier Blasco,et al.  Non-linear robust identification of a greenhouse model using multi-objective evolutionary algorithms , 2007 .

[14]  Li-bin Zhang,et al.  A WP-based nonlinear vibration sensing method for invisible liquid steel slag detection , 2014 .

[15]  J. J. García-Escalante,et al.  Calibration of a greenhouse climate model using evolutionary algorithms , 2009 .

[16]  W. Marsden I and J , 2012 .

[17]  António E. Ruano,et al.  Neural network models in greenhouse air temperature prediction , 2002, Neurocomputing.

[18]  Kejun Zhu,et al.  Energy demand projection of China using a path-coefficient analysis and PSO–GA approach , 2012 .

[19]  T. Boulard,et al.  Greenhouse crop transpiration simulation from external climate conditions , 2000 .

[20]  Marc Aubinet,et al.  Longwave Sky Radiation Parametrizations , 1994 .

[21]  I. Seginer,et al.  Some artificial neural network applications to greenhouse environmental control , 1997 .

[22]  I. Elamvazuthi,et al.  Swarm intelligence and gravitational search algorithm for multi-objective optimization of synthesis gas production , 2013 .

[23]  Andries Petrus Engelbrecht,et al.  Locating multiple optima using particle swarm optimization , 2007, Appl. Math. Comput..

[24]  Belkacem Draoui,et al.  Optimization of Greenhouse Climate Model Parameters Using Particle Swarm Optimization and Genetic Algorithms , 2011 .

[25]  J. Ríos-Moreno,et al.  Greenhouse energy consumption prediction using neural networks models , 2009 .

[26]  Sidhartha Panda,et al.  Hybrid BFOA-PSO algorithm for automatic generation control of linear and nonlinear interconnected power systems , 2013, Appl. Soft Comput..