Converse to the Parter-Wiener theorem: The case of non-trees
暂无分享,去创建一个
[1] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[2] Charles R. Johnson,et al. The Parter-Wiener Theorem: Refinement and Generalization , 2003, SIAM J. Matrix Anal. Appl..
[3] Charles R. Johnson,et al. Almost principal minors of inverse M-matrices , 2001 .
[4] Charles R. Johnson,et al. The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree , 1999 .
[5] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[6] D. Carlson. What are Schur complements, anyway? , 1986 .
[7] Gerry Wiener. Spectral multiplicity and splitting results for a class of qualitative matrices , 1984 .
[8] S. Parter. On the Eigenvalues and Eigenvectors of a Class of Matrices , 1960 .