Spin transport properties in Fe-doped graphene/hexagonal boron-nitride nanoribbons heterostructures

[1]  Chengyan Liu,et al.  Negative differential conductance effect and electrical anisotropy of 2D ZrB2 monolayers , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  Xuesong Li,et al.  A general and simple method for evaluating the electrical transport performance of graphene by the van der Pauw-Hall measurement. , 2018, Science bulletin.

[3]  Dapeng Wu,et al.  Tuning the Electronic Structures and Transport Properties of Zigzag Blue Phosphorene Nanoribbons , 2018, IEEE Transactions on Electron Devices.

[4]  T. Xiang,et al.  Inter-valley spiral order in the Mott insulating state of a heterostructure of trilayer graphene-boron nitride. , 2018, Science bulletin.

[5]  Dapeng Wu,et al.  The rectifying effect of heterojunctions composed of carbon and boron nitride nanotubes , 2017 .

[6]  R. Ruoff,et al.  Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. , 2017, Science bulletin.

[7]  Dongmei Li,et al.  Edge hydrogenation-induced spin-filtering and negative differential resistance effects in zigzag silicene nanoribbons with line defects , 2017 .

[8]  Changfeng Fang,et al.  Design of boron vacancy enhanced spin filtering graphene/BN zigzag nanoribbon heterojunctions , 2017 .

[9]  M. R. Roknabadi,et al.  Ab-initio investigation of spin-dependent transport properties in Fe-doped armchair graphyne nanoribbons , 2016 .

[10]  Dapeng Wu,et al.  The electronic transport properties of transition-metal dichalcogenide lateral heterojunctions , 2016 .

[11]  C. Xia,et al.  The rectifying and negative differential resistance effects in graphene/h-BN nanoribbon heterojunctions. , 2016, Physical chemistry chemical physics : PCCP.

[12]  B. Ouyang,et al.  Tuning Magnetic States of Planar Graphene/h-BN Monolayer Heterostructures via Interface Transition Metal-Vacancy Complexes , 2016 .

[13]  Changfeng Fang,et al.  Vacancy-induced spin polarization in graphene and B–N nanoribbon heterojunctions , 2016 .

[14]  Bin Cui,et al.  Spin transport properties in lower n-acene-graphene nanojunctions. , 2015, Physical chemistry chemical physics : PCCP.

[15]  B. Ouyang,et al.  Energetics and kinetics of vacancies in monolayer graphene boron nitride heterostructures , 2014, 1503.02528.

[16]  M. Rayson,et al.  Interlayer vacancy diffusion and coalescence in graphite , 2014 .

[17]  Lei Liu,et al.  Spatially resolved one-dimensional boundary states in graphene–hexagonal boron nitride planar heterostructures , 2014, Nature Communications.

[18]  J. Idrobo,et al.  Heteroepitaxial Growth of Two-Dimensional Hexagonal Boron Nitride Templated by Graphene Edges , 2014, Science.

[19]  D. Hou,et al.  Vertical-strain-induced spin-splitting in zigzag graphene nanoribbons. , 2013, Nanoscale.

[20]  P. Srivastava,et al.  Fe-Doped Armchair Graphene Nanoribbons for Spintronic/Interconnect Applications , 2013, IEEE Transactions on Nanotechnology.

[21]  B. Ouyang,et al.  Strain engineering of magnetic states of vacancy-decorated hexagonal boron nitride , 2013, 1305.5861.

[22]  S. Pantelides,et al.  Magnetic moment of a single vacancy in graphene and semiconducting nanoribbons , 2012 .

[23]  H. Xiang,et al.  Effective control of the charge and magnetic states of transition-metal atoms on single-layer boron nitride. , 2012, Physical review letters.

[24]  R. Nieminen,et al.  Behavior of a Magnetic Impurity in Graphene in the Presence of a Vacancy , 2011, 1112.1216.

[25]  Bing Huang,et al.  Strain control of magnetism in graphene decorated by transition-metal atoms , 2011, 1107.4657.

[26]  A. Fedorov,et al.  Theoretical study of vacancies and adatoms in white graphene , 2011 .

[27]  Jinlong Yang,et al.  Half-Metallicity in Hybrid Graphene/Boron Nitride Nanoribbons with Dihydrogenated Edges , 2011 .

[28]  A. Krasheninnikov,et al.  Structural defects in graphene. , 2011, ACS nano.

[29]  R. Longo,et al.  Magnetism of substitutional Fe impurities in graphene nanoribbons. , 2011, The Journal of chemical physics.

[30]  W. Hu,et al.  Transition from insulator to metal induced by hybridized connection of graphene and boron nitride nanoribbons , 2010 .

[31]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[32]  Bin Wang,et al.  Spin-dependent transport in Fe-doped carbon nanotubes , 2007 .

[33]  Gotthard Seifert,et al.  Vacancy migration in hexagonal boron nitride , 2007 .

[34]  T. Ohta,et al.  Controlling the Electronic Structure of Bilayer Graphene , 2006, Science.

[35]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[36]  P. Ordejón,et al.  Density-functional method for nonequilibrium electron transport , 2001, cond-mat/0110650.

[37]  Jian Wang,et al.  Ab initio modeling of quantum transport properties of molecular electronic devices , 2001 .

[38]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[39]  R. Landauer,et al.  Generalized many-channel conductance formula with application to small rings. , 1985, Physical review. B, Condensed matter.

[40]  Jingbo Li,et al.  Chemical vapor deposition growth of two-dimensional heterojunctions , 2017 .