Calcium control of triphasic hippocampal STDP

[1]  W. Wildman,et al.  Theoretical Neuroscience , 2014 .

[2]  T. Bliss,et al.  Synaptic plasticity, memory and the hippocampus: a neural network approach to causality , 2012, Nature Reviews Neuroscience.

[3]  Wolfgang Maass,et al.  Branch-Specific Plasticity Enables Self-Organization of Nonlinear Computation in Single Neurons , 2011, The Journal of Neuroscience.

[4]  B. Staresina,et al.  Medial Temporal Theta/Alpha Power Enhancement Precedes Successful Memory Encoding: Evidence Based on Intracranial EEG , 2011, The Journal of Neuroscience.

[5]  György Buzsáki,et al.  Neural Syntax: Cell Assemblies, Synapsembles, and Readers , 2010, Neuron.

[6]  Andrew Philippides,et al.  Dual Coding with STDP in a Spiking Recurrent Neural Network Model of the Hippocampus , 2010, PLoS Comput. Biol..

[7]  Nicolas Brunel,et al.  Mechanisms of Induction and Maintenance of Spike-Timing Dependent Plasticity in Biophysical Synapse Models , 2010, Front. Comput. Neurosci..

[8]  G. Bi,et al.  Temporal modulation of spike-timing-dependent plasticity , 2022 .

[9]  Gayle M. Wittenberg,et al.  Spike Timing Dependent Plasticity: A Consequence of More Fundamental Learning Rules , 2010, Front. Comput. Neurosci..

[10]  N. Burgess,et al.  Brain oscillations and memory , 2010, Current Opinion in Neurobiology.

[11]  J. Mellor,et al.  Frontiers in Synaptic Neuroscience Synaptic Neuroscience , 2022 .

[12]  J. Mellor,et al.  Frontiers in Synaptic Neuroscience Synaptic Neuroscience Stdp in the Hippocampus: the Data the Activity Requirements for Spike Timing-dependent Plasticity in the Hippocampus , 2022 .

[13]  Wulfram Gerstner,et al.  Spike-timing dependent plasticity , 2010, Scholarpedia.

[14]  Richard Hans Robert Hahnloser,et al.  Spike-Time-Dependent Plasticity and Heterosynaptic Competition Organize Networks to Produce Long Scale-Free Sequences of Neural Activity , 2010, Neuron.

[15]  Gordon Pipa,et al.  SORN: A Self-Organizing Recurrent Neural Network , 2009, Front. Comput. Neurosci..

[16]  G. Stuart,et al.  Membrane Potential Changes in Dendritic Spines during Action Potentials and Synaptic Input , 2009, The Journal of Neuroscience.

[17]  Nicolas E. Buchler,et al.  Protein sequestration generates a flexible ultrasensitive response in a genetic network , 2009, Molecular systems biology.

[18]  Hyun Jae Pi,et al.  Coupled Phosphatase and Kinase Switches Produce the Tristability Required for Long-Term Potentiation and Long-Term Depression , 2008, The Journal of Neuroscience.

[19]  S. Nelson,et al.  Strength through Diversity , 2008, Neuron.

[20]  Ole Paulsen,et al.  Spike timing–dependent long-term depression requires presynaptic NMDA receptors , 2008, Nature Neuroscience.

[21]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.

[22]  P. J. Sjöström,et al.  Dendritic excitability and synaptic plasticity. , 2008, Physiological reviews.

[23]  J. O’Keefe,et al.  Environmental novelty is signaled by reduction of the hippocampal theta frequency , 2008, Hippocampus.

[24]  Judit K. Makara,et al.  Compartmentalized dendritic plasticity and input feature storage in neurons , 2008, Nature.

[25]  H. Urakubo,et al.  Requirement of an Allosteric Kinetics of NMDA Receptors for Spike Timing-Dependent Plasticity , 2008, The Journal of Neuroscience.

[26]  S. Siegelbaum,et al.  A Role for Synaptic Inputs at Distal Dendrites: Instructive Signals for Hippocampal Long-Term Plasticity , 2007, Neuron.

[27]  J. Mellor,et al.  The development of synaptic plasticity induction rules and the requirement for postsynaptic spikes in rat hippocampal CA1 pyramidal neurones , 2007, The Journal of physiology.

[28]  Nicolas Brunel,et al.  STDP in a Bistable Synapse Model Based on CaMKII and Associated Signaling Pathways , 2007, PLoS Comput. Biol..

[29]  M. Crosby,et al.  Cell Cycle: Principles of Control , 2007, The Yale Journal of Biology and Medicine.

[30]  Johannes J. Letzkus,et al.  Dendritic mechanisms controlling spike-timing-dependent synaptic plasticity , 2007, Trends in Neurosciences.

[31]  Marco Fuenzalida,et al.  Selective shunting of the NMDA EPSP component by the slow afterhyperpolarization in rat CA1 pyramidal neurons. , 2007, Journal of neurophysiology.

[32]  Richard C Gerkin,et al.  Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity. , 2007, Journal of neurophysiology.

[33]  Dejan Zecevic,et al.  Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre‐ and post‐synaptic activity: a combined voltage‐ and calcium‐imaging study , 2007, The Journal of physiology.

[34]  T. Aihara,et al.  The relation between spike-timing dependent plasticity and Ca2+ dynamics in the hippocampal CA1 network , 2007, Neuroscience.

[35]  T. Bliss,et al.  The Hippocampus Book , 2006 .

[36]  B. Sakmann,et al.  Spine Ca2+ Signaling in Spike-Timing-Dependent Plasticity , 2006, The Journal of Neuroscience.

[37]  W. Gerstner,et al.  Triplets of Spikes in a Model of Spike Timing-Dependent Plasticity , 2006, The Journal of Neuroscience.

[38]  Jonathan R. Whitlock,et al.  Learning Induces Long-Term Potentiation in the Hippocampus , 2006, Science.

[39]  P. J. Sjöström,et al.  A Cooperative Switch Determines the Sign of Synaptic Plasticity in Distal Dendrites of Neocortical Pyramidal Neurons , 2006, Neuron.

[40]  T. Bliss,et al.  Plasticity in the human central nervous system. , 2006, Brain : a journal of neurology.

[41]  S. Wang,et al.  Malleability of Spike-Timing-Dependent Plasticity at the CA3–CA1 Synapse , 2006, The Journal of Neuroscience.

[42]  Vanessa A. Bender,et al.  Two Coincidence Detectors for Spike Timing-Dependent Plasticity in Somatosensory Cortex , 2006, The Journal of Neuroscience.

[43]  Y. Dan,et al.  Contribution of individual spikes in burst-induced long-term synaptic modification. , 2006, Journal of neurophysiology.

[44]  R. Chitwood,et al.  Activity-dependent decrease of excitability in rat hippocampal neurons through increases in Ih , 2005, Nature Neuroscience.

[45]  J. Kao,et al.  Long-term potentiation of exogenous glutamate responses at single dendritic spines. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Dean V Buonomano,et al.  A learning rule for the emergence of stable dynamics and timing in recurrent networks. , 2005, Journal of neurophysiology.

[47]  S. Wang,et al.  Dissection of bidirectional synaptic plasticity into saturable unidirectional processes. , 2005, Journal of neurophysiology.

[48]  S. Wang,et al.  Graded bidirectional synaptic plasticity is composed of switch-like unitary events. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  N. Spruston,et al.  Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity , 2005, Nature Neuroscience.

[50]  Michael D. Ehlers,et al.  Homeostatic plasticity and NMDA receptor trafficking , 2005, Trends in Neurosciences.

[51]  Carson C. Chow,et al.  Calcium time course as a signal for spike-timing-dependent plasticity. , 2005, Journal of neurophysiology.

[52]  Y. Dan,et al.  Spike-timing-dependent synaptic plasticity depends on dendritic location , 2005, Nature.

[53]  Stephen F Traynelis,et al.  Subunit‐specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles , 2005, The Journal of physiology.

[54]  David W. Nauen,et al.  Coactivation and timing-dependent integration of synaptic potentiation and depression , 2005, Nature Neuroscience.

[55]  H. Shouval,et al.  Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. , 2005, Journal of neurophysiology.

[56]  Sachin S Talathi,et al.  Synaptic plasticity with discrete state synapses. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  L. Cooper,et al.  Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[58]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[59]  Michael Häusser,et al.  A proportional but slower NMDA potentiation follows AMPA potentiation in LTP , 2004, Nature Neuroscience.

[60]  Daniel Johnston,et al.  LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites , 2004, Nature Neuroscience.

[61]  O. Paulsen,et al.  Maturation of Long-Term Potentiation Induction Rules in Rodent Hippocampus: Role of GABAergic Inhibition , 2003, The Journal of Neuroscience.

[62]  Ramón Huerta,et al.  Biophysical model of synaptic plasticity dynamics , 2003, Biological Cybernetics.

[63]  P. J. Sjöström,et al.  Neocortical LTD via Coincident Activation of Presynaptic NMDA and Cannabinoid Receptors , 2003, Neuron.

[64]  Niraj S. Desai,et al.  Homeostatic plasticity in the CNS: synaptic and intrinsic forms , 2003, Journal of Physiology-Paris.

[65]  D. Johnston,et al.  Active dendrites, potassium channels and synaptic plasticity. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[66]  L. Cooper,et al.  A unified model of NMDA receptor-dependent bidirectional synaptic plasticity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[67]  U. Karmarkar,et al.  A model of spike-timing dependent plasticity: one or two coincidence detectors? , 2002, Journal of neurophysiology.

[68]  P. J. Sjöström,et al.  Spike timing, calcium signals and synaptic plasticity , 2002, Current Opinion in Neurobiology.

[69]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[70]  P. J. Sjöström,et al.  Rate, Timing, and Cooperativity Jointly Determine Cortical Synaptic Plasticity , 2001, Neuron.

[71]  G. Buzsáki,et al.  Temporal Interaction between Single Spikes and Complex Spike Bursts in Hippocampal Pyramidal Cells , 2001, Neuron.

[72]  M. Sakurai,et al.  Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factor , 2001, The European journal of neuroscience.

[73]  B. Sakmann,et al.  Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons , 2001, The Journal of physiology.

[74]  M. Poo,et al.  Calcium stores regulate the polarity and input specificity of synaptic modification , 2000, Nature.

[75]  A. Zhabotinsky Bistability in the Ca(2+)/calmodulin-dependent protein kinase-phosphatase system. , 2000, Biophysical journal.

[76]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[77]  M. Bear,et al.  Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity , 2000, Nature.

[78]  A. Artola,et al.  Synaptic Activity Modulates the Induction of Bidirectional Synaptic Changes in Adult Mouse Hippocampus , 2000, The Journal of Neuroscience.

[79]  D. Muller,et al.  Decreased Protein Phosphatase 2A Activity in Hippocampal Long‐Term Potentiation , 2000, Journal of neurochemistry.

[80]  R. Nicoll,et al.  Long-term potentiation--a decade of progress? , 1999, Science.

[81]  O. Paulsen,et al.  Rapid report: postsynaptic bursting is essential for 'Hebbian' induction of associative long-term potentiation at excitatory synapses in rat hippocampus. , 1999, The Journal of physiology.

[82]  R. Zucker,et al.  Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. , 1999, Journal of neurophysiology.

[83]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[84]  J. Hopfield,et al.  All-or-none potentiation at CA3-CA1 synapses. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[85]  D. Debanne,et al.  Long‐term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures , 1998, The Journal of physiology.

[86]  U. Frey,et al.  Synaptic tagging and long-term potentiation , 1997, Nature.

[87]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.

[88]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[89]  D. Johnston,et al.  The role of dendritic action potentials and Ca2+ influx in the induction of homosynaptic long-term depression in hippocampal CA1 pyramidal neurons. , 1996, Learning & memory.

[90]  W. Klimesch,et al.  Theta band power in the human scalp EEG and the encoding of new information , 1996, Neuroreport.

[91]  Robert C. Malenka,et al.  Synaptic plasticity in the hippocampus: LTP and LTD , 1994, Cell.

[92]  E. Kandel,et al.  Requirement of a critical period of transcription for induction of a late phase of LTP. , 1994, Science.

[93]  Terrence J. Sejnowski,et al.  Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism , 1994, Journal of Computational Neuroscience.

[94]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[95]  W. Singer,et al.  Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation , 1993, Trends in Neurosciences.

[96]  R. Malenka,et al.  An essential role for protein phosphatases in hippocampal long-term depression. , 1993, Science.

[97]  M. Bear,et al.  Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[98]  CE Jahr,et al.  A quantitative description of NMDA receptor-channel kinetic behavior , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[99]  J. Lisman,et al.  A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[100]  R. Tsien,et al.  Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. , 1989, Science.

[101]  R. Nicoll,et al.  An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation , 1989, Nature.

[102]  G. Lynch,et al.  Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation , 1986, Brain Research.

[103]  M. Krug,et al.  Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats , 1984, Brain Research Bulletin.

[104]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[105]  T. Bliss,et al.  Synaptic plasticity in the hippocampus , 1979, Trends in Neurosciences.

[106]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[107]  P. Boffey The Environment: ACS Report Is Practical Anti-Pollution Guide. , 1969, Science.

[108]  廣瀬雄一,et al.  Neuroscience , 2019, Workplace Attachments.

[109]  R. Malenka,et al.  Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms , 2008, Neuropsychopharmacology.

[110]  相原 威 The relation between spike-timing dependent plasticity and Ca[2+] dynamics in the hippocampal CA1 network , 2007 .

[111]  Andy Hudmon,et al.  Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. , 2002, Annual review of biochemistry.

[112]  A. C. Greenwood,et al.  Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. , 2001, Journal of neurophysiology.

[113]  S. J. Martin,et al.  Synaptic plasticity and memory: an evaluation of the hypothesis. , 2000, Annual review of neuroscience.

[114]  S. B. Kater,et al.  Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. , 1994, Annual review of neuroscience.

[115]  H. Schulman,et al.  Neuronal Ca2+/calmodulin-dependent protein kinases. , 1992, Annual review of biochemistry.