Regulation of the L-arabinose operon of Escherichia coli.

[1]  R. Schleif,et al.  Biophysical evidence of arm-domain interactions in AraC. , 2001, Analytical biochemistry.

[2]  Martin Wu,et al.  Strengthened Arm-Dimerization Domain Interactions in AraC* , 2001, The Journal of Biological Chemistry.

[3]  M. Wu,et al.  The role of rigidity in DNA looping-unlooping by AraC. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  T. Ellenberger,et al.  Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA , 2000, Nature Structural Biology.

[5]  E. Warbrick,et al.  Essential interaction between the fission yeast DNA polymerase δ subunit Cdc27 and Pcn1 (PCNA) mediated through a C‐terminal p21Cip1‐like PCNA binding motif , 2000, The EMBO journal.

[6]  S. Harrison,et al.  Peptide-in-groove interactions link target proteins to the beta-propeller of clathrin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  R. Schleif,et al.  Hemiplegic mutations in AraC protein. , 1999, Journal of molecular biology.

[8]  R. Ebright,et al.  Transcription activation by catabolite activator protein (CAP). , 1999, Journal of molecular biology.

[9]  T. Steitz,et al.  Building a Replisome from Interacting Pieces Sliding Clamp Complexed to a Peptide from DNA Polymerase and a Polymerase Editing Complex , 1999, Cell.

[10]  M. Summers,et al.  NMR studies of the pbx1 TALE homeodomain protein free in solution and bound to DNA: proposal for a mechanism of HoxB1-Pbx1-DNA complex assembly. , 1999, Journal of molecular biology.

[11]  E. Geiduschek,et al.  Activator-sigma interaction: A hydrophobic segment mediates the interaction of a sigma family promoter recognition protein with a sliding clamp transcription activator. , 1998, Journal of molecular biology.

[12]  Robert G. Martin,et al.  A novel DNA-binding motif in MarA: the first structure for an AraC family transcriptional activator. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[13]  R. Schleif,et al.  Apo-AraC actively seeks to loop. , 1998, Journal of molecular biology.

[14]  R. Schleif,et al.  Arm-domain interactions in AraC. , 1998, Journal of molecular biology.

[15]  Xin Zhang,et al.  Catabolite Gene Activator Protein Mutations Affecting Activity of the araBAD Promoter , 1998, Journal of bacteriology.

[16]  A Bairoch,et al.  Arac/XylS family of transcriptional regulators , 1997, Microbiology and molecular biology reviews : MMBR.

[17]  C. Wolberger,et al.  The 1.6 A crystal structure of the AraC sugar-binding and dimerization domain complexed with D-fucose. , 1997, Journal of molecular biology.

[18]  J. Wess,et al.  Genetic Analysis of Receptor-Gαq Coupling Selectivity* , 1997, The Journal of Biological Chemistry.

[19]  T. Inagami,et al.  A Domain for G Protein Coupling in Carboxyl-terminal Tail of Rat Angiotensin II Receptor Type 1A* , 1997, The Journal of Biological Chemistry.

[20]  C. Wolberger,et al.  Structural basis for ligand-regulated oligomerization of AraC. , 1997, Science.

[21]  L. Cantley,et al.  Recognition of Unique Carboxyl-Terminal Motifs by Distinct PDZ Domains , 1997, Science.

[22]  A. Levine,et al.  Structure of the MDM2 Oncoprotein Bound to the p53 Tumor Suppressor Transactivation Domain , 1996, Science.

[23]  X Zhang,et al.  Transcription activation parameters at ara pBAD. , 1996, Journal of molecular biology.

[24]  J D Dunitz,et al.  Win some, lose some: enthalpy-entropy compensation in weak intermolecular interactions. , 1995, Chemistry & biology.

[25]  C. M. Johnson,et al.  In vivo induction kinetics of the arabinose promoters in Escherichia coli , 1995, Journal of bacteriology.

[26]  R. Schleif,et al.  Variation of half‐site organization and DNA looping by AraC protein. , 1993, The EMBO journal.

[27]  R. Schleif,et al.  Mapping, sequence, and apparent lack of function of araJ, a gene of the Escherichia coli arabinose regulon , 1991, Journal of bacteriology.

[28]  R F Schleif,et al.  DNA looping and unlooping by AraC protein , 1990, Science.

[29]  R. Schleif,et al.  Positive regulation of the Escherichia coli L-rhamnose operon is mediated by the products of tandemly repeated regulatory genes. , 1987, Journal of molecular biology.

[30]  B. Müller-Hill,et al.  Specific destruction of the second lac operator decreases repression of the lac operon in Escherichia coli fivefold. , 1987, Journal of molecular biology.

[31]  K. Martin,et al.  The DNA loop model for ara repression: AraC protein occupies the proposed loop sites in vivo and repression-negative mutations lie in these same sites. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[32]  K. Hammer,et al.  Two operator sites separated by 599 base pairs are required for deoR repression of the deo operon of Escherichia coli. , 1985, The EMBO journal.

[33]  R. Schleif,et al.  A dimer of AraC protein contacts three adjacent major groove regions of the araI DNA site. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[34]  T. Dunn,et al.  Upstream repression and CRP stimulation of the Escherichia coli L-arabinose operon. , 1984, Journal of molecular biology.

[35]  W Hendrickson,et al.  Regulation of the Escherichia coli L-arabinose operon studied by gel electrophoresis DNA binding assay. , 1984, Journal of molecular biology.

[36]  T. Dunn,et al.  An operator at -280 base pairs that is required for repression of araBAD operon promoter: addition of DNA helical turns between the operator and promoter cyclically hinders repression. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[37]  S. Hahn,et al.  In vivo regulation of the Escherichia coli araC promoter , 1983, Journal of bacteriology.

[38]  M. Casadaban,et al.  Regulation of the regulatory gene for the arabinose pathway, araC. , 1976, Journal of molecular biology.

[39]  R. Schleif,et al.  Kinetics of the onset of catabolite repression in Escherichia coli as determined by lac messenger ribonucleic acid initiations and intracellular cyclic adenosine 3',5'-monophosphate levels , 1975, Journal of bacteriology.

[40]  R. Schleif,et al.  The regulatory region of the L-arabinose operon: its isolation on a 1000 base-pair fragment from DNA heteroduplexes. , 1975, Journal of molecular biology.

[41]  R. Schleif,et al.  The regulatory region of the L-arabinose operon: a physical, genetic and physiological study. , 1975, Journal of molecular biology.

[42]  J. Hirsh,et al.  In vivo experiments on the mechanism of action of L-arabinose C gene activator and lactose repressor. , 1973, Journal of molecular biology.

[43]  R. Schleif Fine-structure deletion map of the Escherichia coli L-arabinose operon. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[44]  E. Englesberg,et al.  Initiator constitutive mutants of the L-arabinose operon (OIBAD) of Escherichia coli B/r. , 1971, Genetics.

[45]  J. Greenblatt,et al.  Arabinose C protein: regulation of the arabinose operon in vitro. , 1971, Nature: New biology.

[46]  S. S. Park,et al.  d-Fucose as a Gratuitous Inducer of the l-Arabinose Operon in Strains of Escherichia coli B/r Mutant in Gene araC , 1971, Journal of bacteriology.

[47]  C. Squires,et al.  An analysis of "revertants" of a deletion mutant in the C gene of the L-arabinose gene complex in Escherichia coli B-r: isolation of initiator constitutive mutants (Ic). , 1969, Journal of molecular biology.

[48]  C. Squires,et al.  The L-arabinose operon in Escherichia coli B-r: a genetic demonstration of two functional states of the product of a regulator gene. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[49]  E. Englesberg,et al.  Further evidence for positive control of the L-arabinose system by gene araC. , 1967, Journal of molecular biology.

[50]  J. Power,et al.  Positive Control of Enzyme Synthesis by Gene C in the l-Arabinose System , 1965, Journal of bacteriology.

[51]  R. Helling,et al.  COMPLEMENTATION STUDIES OF ARABINOSE GENES IN ESCHERICHIA COLI. , 1963, Genetics.

[52]  J. Gross,et al.  Determination of the order of mutational sites governing l-arabinose utilization in Escherichia coliBr by transduction with phage P1bt☆☆☆ , 1959 .

[53]  佐野 友昭 A domain for G protein coupling in carboxyl-terminal tail of rat angiotensin II receptor type 1A , 1999 .

[54]  R. Schleif Arm‐domain interactions in proteins: a review , 1999, Proteins.

[55]  R. Schleif,et al.  In vivo DNA loops in araCBAD: size limits and helical repeat. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[56]  R. Schleif,et al.  DNA looping. , 1988, Science.