Preference Modelling

This paper provides the reader with a presentation of preference modelling fundamental notions as well as some recent results in this field. Preference modelling is an inevitable step in a variety of fields: economy, sociology, psychology, mathematical programming, even medicine, archaeology, and obviously decision analysis. Our notation and some basic definitions, such as those of binary relation, properties and ordered sets, are presented at the beginning of the paper. We start by discussing different reasons for constructing a model or preference. We then go through a number of issues that influence the construction of preference models. Different formalisations besides classical logic such as fuzzy sets and non-classical logics become necessary. We then present different types of preference structures reflecting the behavior of a decision-maker: classical, extended and valued ones. It is relevant to have a numerical representation of preferences: functional representations, value functions. The concepts of thresholds and minimal representation are also introduced in this section. In section 7, we briefly explore the concept of deontic logic (logic of preference) and other formalisms associated with "compact representation of preferences" introduced for special purposes. We end the paper with some concluding remarks.

[1]  E. Sosa,et al.  On the Logic of "Intrinsically Better" , 1966 .

[2]  Ron Shamir,et al.  Complexity and algorithms for reasoning about time: a graph-theoretic approach , 1993, JACM.

[3]  Ronen I. Brafman,et al.  Reasoning With Conditional Ceteris Paribus Preference Statements , 1999, UAI.

[4]  Irène Charon-Fournier,et al.  Utilisation des scores dans des méthodes exactes déterminant les ordres médians de tournois , 1992 .

[5]  Richard M. Karp,et al.  Mapping the genome: some combinatorial problems arising in molecular biology , 1993, STOC.

[6]  Patrick Doherty,et al.  Partial logics and partial preferences. , 1992 .

[7]  P. Fishburn Nontransitive measurable utility , 1982 .

[8]  D. Bouyssou,et al.  Nontransitive decomposable conjoint measurement , 2002 .

[9]  A. Tversky,et al.  Foundations of Measurement, Vol. I: Additive and Polynomial Representations , 1991 .

[10]  B. Roy,et al.  Procédure automatique d'examen de dossiers fondée sur une segmentation trichotomique en présence de critères multiples , 1977 .

[11]  J. Jaffray,et al.  Decision making with belief functions: Compatibility and incompatibility with the sure-thing principle , 1993 .

[12]  Charles S. Peirce,et al.  A theory of probable inference. , 1883 .

[13]  Masaharu Mizumoto,et al.  Some Properties of Fuzzy Sets of Type 2 , 1976, Inf. Control..

[14]  Ronald R. Yager,et al.  A procedure for ordering fuzzy subsets of the unit interval , 1981, Inf. Sci..

[15]  S French,et al.  Multicriteria Methodology for Decision Aiding , 1996 .

[16]  Jean-Paul Doignon,et al.  On realizable biorders and the biorder dimension of a relation , 1984 .

[17]  A. Tanguiane Aggregation and Representation of Preferences , 1991 .

[18]  R. Hursthouse THE LOGIC OF DECISION AND ACTION , 1969 .

[19]  Margaret B. Cozzens,et al.  Double Semiorders and Double Indifference Graphs , 1982 .

[20]  Bernard Monjardet,et al.  Ordered Sets and Social Sciences , 1982 .

[21]  Jon Doyle,et al.  Modular utility representation for decision-theoretic planning , 1992 .

[22]  A. Chateauneuf Continuous representation of a preference relation on a connected topological space , 1987 .

[23]  P. Vincke,et al.  Fuzzy Possibility Graphs and Their Application to Ranking Fuzzy Numbers , 1988 .

[24]  M. Pirlot Minimal representation of a semiorder , 1990 .

[25]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[26]  Arnon Avron,et al.  The Value of the Four Values , 1998, Artif. Intell..

[27]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[28]  Philippe Fortemps,et al.  A Graded Quadrivalent Logic for Ordinal Preference Modelling: Loyola–Like Approach , 2002, Fuzzy Optim. Decis. Mak..

[29]  Luis C. Dias,et al.  On the Constructive and Other Approaches in Decision Aiding , 2004 .

[30]  Yu Yandong Triangular norms and TNF-sigma-algebras , 1985 .

[31]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[32]  Jon Doyle,et al.  Doyle See Infer Choose Do Perceive Act , 2009 .

[33]  D. Bouyssou Outranking Relations: Do They Have Special Properties? , 1996 .

[34]  François Fages,et al.  Combining Explicit Negation and Negation by Failure Via Belnap's Logic , 1997, Theor. Comput. Sci..

[35]  Alexis Tsoukiàs,et al.  A first-order, four valued, weakly paraconsistent logic and its relation to rough sets semantics , 2002 .

[36]  Bernard Roy,et al.  Preferences and numbers , 2001 .

[37]  G. Debreu Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .

[38]  Alexis Tsoukiàs,et al.  A survey on non conventional preference modeling , 1992 .

[39]  P. Slater Inconsistencies in a schedule of paired comparisons , 1961 .

[40]  N. Rescher The Logic of Preference , 1968 .

[41]  S. Orlovsky Decision-making with a fuzzy preference relation , 1978 .

[42]  A. Tarski Contributions to the theory of models. III , 1954 .

[43]  B. Monjardet Relations à «éloignement minimum» de relations binaires. Note bibliographique , 1979 .

[44]  Bernard Monjardet,et al.  The median procedure in cluster analysis and social choice theory , 1981, Math. Soc. Sci..

[45]  William Emmanuel S. Yu,et al.  Aide multicritere a la decision dans le cadre de la problematique du tri , 1992 .

[46]  George R. Widmeyer,et al.  Logic modeling with partially ordered preferences , 1988, Decis. Support Syst..

[47]  Jon Doyle,et al.  Reasoned Assumptions and Rational Psychology , 1994, Fundam. Informaticae.

[48]  Peter C. Fisi-Iburn Nontransitive preferences in decision theory , 1991 .

[49]  Melvin Fitting,et al.  Bilattices and the Semantics of Logic Programming , 1991, J. Log. Program..

[50]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[51]  Jon Doyle,et al.  Constructive belief and rational representation , 1989, Comput. Intell..

[52]  Yoav Shoham,et al.  Nonmonotonic Logics: Meaning and Utility , 1987, IJCAI.

[53]  Clyde H. Coombs,et al.  On the detection of structure in attitudes and developmental processes. , 1973 .

[54]  Moncef Abbas Any complete preference structure without circuit admits an interval representation , 1995 .

[55]  Carl Halldin,et al.  Preference and the cost of preferential choice , 1986 .

[56]  S. Orlovsky Decision-making with a fuzzy preference relation , 1978 .

[57]  J. Moreno A transitivity approach to preference relational systems , 1992 .

[58]  B. Monjardet Axiomatiques et propri?et?es des quasi-ordres , 1978 .

[59]  Bernard De Baets,et al.  Recent advances in fuzzy preference modelling , 1996 .

[60]  Elizabeth C. Hirschman,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[61]  Paul McNamara,et al.  Deontic logic , 2006, Logic and the Modalities in the Twentieth Century.

[62]  Begoña Subiza Martínez Numerical Representation Of Acyclic Preferences , 1993 .

[63]  J. Bermond Ordres à distance minimum d'un tournoi et graphes partiels sans circuits maximaux , 1972 .

[64]  Alexis Tsoukiàs,et al.  Numerical representation of PQI interval orders , 2005, Discret. Appl. Math..

[65]  George R. Widmeyer,et al.  Reasoning with preferences and values , 1990, Decis. Support Syst..

[66]  D. Kendall,et al.  Mathematics in the Archaeological and Historical Sciences , 1971, The Mathematical Gazette.

[67]  J. D. Mullen DOES THE LOGIC OF PREFERENCE REST ON A MISTAKE , 1979 .

[68]  L. A. ZADEH,et al.  The concept of a linguistic variable and its application to approximate reasoning - I , 1975, Inf. Sci..

[69]  M. J. Frank On the simultaneous associativity of F(x, y) and x+y-F(x, y). (Short Communication). , 1978 .

[70]  A. Tsoukiàs,et al.  From Concordance / Discordance to the Modelling of Positive and Negative Reasons in Decision Aiding , 2002 .

[71]  Ronen I. Brafman,et al.  CP-nets: Reasoning and Consistency Testing , 2002, KR.

[72]  Bernard De Baets,et al.  Fuzzy preference structures and their characterization. , 1995 .

[73]  Dirk van Dalen,et al.  Logic and structure , 1980 .

[74]  Patrice Perny,et al.  A preference-based approach to spanning trees and shortest paths problems**** , 2005, Eur. J. Oper. Res..

[75]  Alexei Yu. Muravitsky,et al.  A knowledge representation based on the Belnap's four-valued logic , 1995, J. Appl. Non Class. Logics.

[76]  H. Poincaré La valeur de la science , 1905 .

[77]  Marc Roubens,et al.  On families of semiorders and interval orders imbedded in a valued structure of preference: A survey , 1984, Inf. Sci..

[78]  G. Fechner Elemente der Psychophysik , 1998 .

[79]  Bernard Roy,et al.  Aide multicritère à la décision : méthodes et cas , 1993 .

[80]  A. Tsoukiàs,et al.  A polynomial time algorithm to detect PQI interval orders , 2000 .

[81]  Bernard De Baets,et al.  Characterizable fuzzy preference structures , 1998, Ann. Oper. Res..

[82]  Richmond H. Thomason,et al.  Logics for Inheritance Theory , 1988, NMR.

[83]  Bernard Roy,et al.  Main sources of inaccurate determination, uncertainty and imprecision in decision models , 1989 .

[84]  S. Weber A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms , 1983 .

[85]  P. Fishburn,et al.  Foundations of Preference , 1988 .

[86]  A. Tsoukiàs,et al.  Double threshold orders: a new axiomatization , 1998 .

[87]  G. Wright The logic of preference reconsidered , 1972 .

[88]  Ralph L. Keeney,et al.  Decisions with multiple objectives: preferences and value tradeoffs , 1976 .

[89]  A. Tversky Intransitivity of preferences. , 1969 .

[90]  Jan A. Bergstra,et al.  A propositional logic with 4 values: true, false, divergent and meaningless , 1995, J. Appl. Non Class. Logics.

[91]  Alexis Tsoukiàs,et al.  On the continuous extension of a four valued logic for preference modelling , 1998 .

[92]  E. Lee,et al.  Comparison of fuzzy numbers based on the probability measure of fuzzy events , 1988 .

[93]  R. Słowiński Fuzzy sets in decision analysis, operations research and statistics , 1999 .

[94]  P. Fishburn Nontransitive additive conjoint measurement , 1991 .

[95]  Jérôme Lang,et al.  Logical representation of preferences for group decision making , 2000, KR.

[96]  P. Vincke,et al.  Relational Systems of Preference with One or More Pseudo-Criteria: Some New Concepts and Results , 1984 .

[97]  R. Agaev,et al.  Interval choice: classic and general cases , 1993 .

[98]  Denis Bouyssou,et al.  A characterization of strict concordance relations , 2002 .

[99]  A. Carrano Establishing the order of human chromosome-specific DNA fragments. , 1988, Basic life sciences.

[100]  Bernard Roy,et al.  A-MCD-A - Aide Multi Critère à la Décision (Multiple Criteria Decision Aiding) , 2001 .

[101]  P. Fishburn,et al.  Norbert Wiener on the theory of measurement (1914, 1915, 1921) , 1992 .

[102]  F. B. Vernadat,et al.  Decisions with Multiple Objectives: Preferences and Value Tradeoffs , 1994 .

[103]  GolumbicMartin Charles,et al.  Complexity and algorithms for reasoning about time , 1993 .

[104]  Souhila Kaci,et al.  A possibilistic logic handling of strong preferences , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[105]  J. A. Goguen,et al.  The logic of inexact concepts , 1969, Synthese.

[106]  A. Beardon,et al.  The non-existence of a utility function and the structure of non-representable preference relations , 2002 .

[107]  Ronen I. Brafman,et al.  On Decision-Theoretic Foundations for Defaults , 1995, IJCAI.

[108]  Didier Dubois,et al.  Evaluation and decision models: a critical perspective , 2003 .

[109]  P. Green,et al.  Research for Marketing Decisions. , 1967 .

[110]  P. Vincke,et al.  Pseudo-orders: Definition, properties and numerical representation , 1987 .

[111]  J. Doignon Sur les représentations minimales des semiordres et des ordres d'intervalles , 1988 .

[112]  Wojciech A. Trybulec Partially Ordered Sets , 1990 .

[113]  Hans Hermes,et al.  Introduction to mathematical logic , 1973, Universitext.

[114]  Didier Dubois,et al.  Bipolar Representation and Fusion of Preferences on the Possibilistic Logic framework , 2002, KR.

[115]  J. Fodor An axiomatic approach to fuzzy preference modelling , 1992 .

[116]  R. Yager On a general class of fuzzy connectives , 1980 .

[117]  D. Bouyssou,et al.  Conjoint Measurement without Additivity and Transitivity , 1999 .

[118]  Walter Bossert,et al.  Upper Semicontinuous Extensions of Binary Relations , 2002 .

[119]  A. Tsoukiàs,et al.  A new axiomatic foundation of partial comparability , 1995 .

[120]  Patrick Suppes,et al.  Foundations of Measurement, Vol. II: Geometrical, Threshold, and Probabilistic Representations , 1989 .

[121]  F. Roberts Measurement Theory with Applications to Decisionmaking, Utility, and the Social Sciences: Measurement Theory , 1984 .

[122]  Patrick Suppes,et al.  Foundational aspects of theories of measurement , 1958, Journal of Symbolic Logic.

[123]  A. Sen,et al.  Social Choice Theory , 1980 .

[124]  C. Alsina On a family of connectives for fuzzy sets , 1985 .

[125]  David J. Hand,et al.  Discrimination and Classification , 1982 .

[126]  Vladik Kreinovich,et al.  On hardware support for interval computations and for soft computing: theorems , 1997, IEEE Trans. Fuzzy Syst..

[127]  L. V. Tavares Generalized transitivity and preferences modelling: The concept of Hyper-Order , 1988 .

[128]  S. Benzer The fine structure of the gene. , 1962, Scientific American.

[129]  Craig Boutilier,et al.  Toward a Logic for Qualitative Decision Theory , 1994, KR.

[130]  Fishburn,et al.  Generalizations of Semiorders: A Review Note , 1997, Journal of mathematical psychology.

[131]  J. Fodor,et al.  Valued preference structures , 1994 .

[132]  B. Hansson Choice structures and preference relations , 1968, Synthese.

[133]  J. Dombi A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators , 1982 .

[134]  J. Jaffray,et al.  Rational Behavior under Complete Ignorance , 1980 .

[135]  O. Hudry,et al.  Ordres médians et ordres de Slater des tournois , 1996 .

[136]  Jean-Claude Falmagne,et al.  Well-graded families of relations , 1997, Discret. Math..

[137]  Graham K. Rand,et al.  Non-conventional Preference Relations in Decision Making , 1989 .

[138]  Daniel Lehmann,et al.  Nonmonotonic Logics and Semantics , 2001, J. Log. Comput..

[139]  O. Huber An axiomatic system for multidimensional preferences , 1974 .

[140]  H. Zimmermann,et al.  Fuzzy Set Theory and Its Applications , 1993 .

[141]  A. Guénoche,et al.  Median linear orders: Heuristics and a branch and bound algorithm , 1989 .

[142]  Alexis Tsoukiàs,et al.  A Characterization of PQI Interval Orders , 2003, Discret. Appl. Math..

[143]  Jutta Mitas Minimal Representation of Semiorders with Intervals of Same Length , 1994, ORDAL.

[144]  D. Bouyssou,et al.  Utility Maximization, Choice and Preference , 2002 .

[145]  Patrice Perny,et al.  Multicriteria filtering methods based onconcordance and non-discordance principles , 1998, Ann. Oper. Res..

[146]  Nuel D. Belnap,et al.  A Useful Four-Valued Logic , 1977 .

[147]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[148]  A. K. Basu A Theory of Decision-Making , 1973, The Journal of Sociology & Social Welfare.

[149]  Yutaka Nakamura Real interval representations , 2002 .

[150]  Didier Dubois,et al.  Possibilistic logic representation of preferences: relating prioritized goals and satisfaction levels expressions , 2002, ECAI.

[151]  Nuel D. Belnap,et al.  How a Computer Should Think , 2019, New Essays on Belnap-­Dunn Logic.

[152]  Anthony Willing A note on Rescher's ‘Semantic Foundations for the Logic of Preference’ , 1976 .

[153]  W. E. Armstrong The Determinateness of the Utility Function , 1939 .

[154]  Didier Dubois,et al.  Possibility Theory, Probability Theory and Multiple-Valued Logics: A Clarification , 2001, Annals of Mathematics and Artificial Intelligence.

[155]  Dana S. Scott,et al.  Some Ordered Sets in Computer Science , 1982 .

[156]  Josep Maria Font,et al.  Note on a six-valued extension of three-valued logic , 1993, J. Appl. Non Class. Logics.

[157]  S. Ovchinnikov,et al.  On strict preference relations , 1991 .

[158]  Z. Pawlak,et al.  Decision analysis using rough sets , 1994 .

[159]  Ron Shamir,et al.  Satisfiability Problems on Intervals and Unit Intervals , 1997, Theor. Comput. Sci..

[160]  B. Hansson Fundamental axioms for preference relations , 1968, Synthese.

[161]  P. Vincke,et al.  Biorder families, valued relations and preference modelling , 1986 .

[162]  R. M. Adelson,et al.  Utility Theory for Decision Making , 1971 .

[163]  P. Fishburn Interval representations for interval orders and semiorders , 1973 .

[164]  P. Vincke,et al.  Preference structures and threshold models , 1993 .

[165]  E. Induráin,et al.  Representability of Interval Orders , 1998 .

[166]  Thierry Marchant,et al.  Evaluation and Decision Models: A Critical Perspective , 2000 .

[167]  Philippe Vincke,et al.  Multicriteria Decision-aid , 1993 .

[168]  Bertrand Mareschal,et al.  Prométhée: a new family of outranking methods in multicriteria analysis , 1984 .

[169]  Constantin Zopounidis,et al.  Multicriteria classification and sorting methods: A literature review , 2002, Eur. J. Oper. Res..

[170]  Sarit Kraus,et al.  Nonmonotonic Reasoning, Preferential Models and Cumulative Logics , 1990, Artif. Intell..

[171]  Alexis Tsoukiàs,et al.  Extended preference structures in MCDA , 1997 .

[172]  Didier Dubois,et al.  Ranking fuzzy numbers in the setting of possibility theory , 1983, Inf. Sci..

[173]  C. Coombs A theory of data. , 1965, Psychology Review.

[174]  B. Roy THE OUTRANKING APPROACH AND THE FOUNDATIONS OF ELECTRE METHODS , 1991 .

[175]  Soren Hallden,et al.  On the logic of "better" , 1957 .

[176]  R. Luce Semiorders and a Theory of Utility Discrimination , 1956 .

[177]  K. May Intransitivity, Utility, and the Aggregation of Preference Patterns , 1954 .

[178]  E. Sosa,et al.  Intrinsic preferability and the problem of supererogation , 1966, Synthese.

[179]  Patrice Perny,et al.  On preference-based search in state space graphs , 2002, AAAI/IAAI.

[180]  B. Roy,et al.  The use of fuzzy outranking relations in preference modelling , 1992 .

[181]  Denis Bouyssou,et al.  Modelling Inaccurate Determination, Uncertainty, Imprecision Using Multiple Criteria , 1989 .