Effect of size on the dynamic behaviors of atomic force microscopes

[1]  Jie Yang,et al.  Flexural Vibration of an Atomic Force Microscope Cantilever Based on Modified Couple Stress Theory , 2015 .

[2]  Farid Tajaddodianfar,et al.  Size-dependent bistability of an electrostatically actuated arch NEMS based on strain gradient theory , 2015 .

[3]  Aghil Yousefi-Koma,et al.  Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams , 2015 .

[4]  T. Braun,et al.  Influence of squeeze-film damping on higher-mode microcantilever vibrations in liquid , 2014 .

[5]  M. H. Korayem,et al.  Frequency Response of AFM Nano Robot in Liquid by Considering the Effect of Cantilever Dimension and Environmental Parameters , 2014 .

[6]  Jürgen Popp,et al.  Single virus detection by means of atomic force microscopy in combination with advanced image analysis. , 2014, Journal of structural biology.

[7]  Aghil Yousefi-Koma,et al.  Nano-resonator frequency response based on strain gradient theory , 2014 .

[8]  Richard A. Cunha,et al.  Modeling the coverage of an AFM tip by enzymes and its application in nanobiosensors. , 2014, Journal of molecular graphics & modelling.

[9]  M. Abbasi,et al.  A detailed analysis of resonant frequency and sensitivity of flexural modes of an atomic force microscope cantilevers with sidewall probe based on a nonlocal elasticity theory , 2014 .

[10]  Win-Jin Chang,et al.  Dynamic behaviour of atomic force microscope-based nanomachining based on a modified couple stress theory , 2013 .

[11]  Kazuyuki Yagasaki,et al.  Nonlinear dynamics and bifurcations in external feedback control of microcantilevers in atomic force microscopy , 2013, Commun. Nonlinear Sci. Numer. Simul..

[12]  Giovanni Dietler,et al.  Mechanical properties of biological specimens explored by atomic force microscopy , 2013 .

[13]  Win-Jin Chang,et al.  Sensitivity of V-shaped atomic force microscope cantilevers based on a modified couple stress theory , 2011 .

[14]  G. Alici,et al.  Evaluation of length-scale effects for mechanical behaviour of micro- and nanocantilevers: II. Experimental verification of deflection models using atomic force microscopy , 2011 .

[15]  Gursel Alici,et al.  Evaluation of length-scale effects for mechanical behaviour of micro- and nanocantilevers: I. Experimental determination of length-scale factors , 2011 .

[16]  A. Meghdari,et al.  Influence of the tip mass on the tip-sample interactions in TM-AFM. , 2011, Ultramicroscopy.

[17]  Yiming Fu,et al.  Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies , 2011 .

[18]  M. Korayem,et al.  Dynamic analysis of tapping-mode AFM considering capillary force interactions , 2011 .

[19]  Mohammad Taghi Ahmadian,et al.  Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory , 2010 .

[20]  Yiming Fu,et al.  INFLUENCES OF THE SURFACE ENERGIES ON THE NONLINEAR STATIC AND DYNAMIC BEHAVIORS OF NANOBEAMS , 2010 .

[21]  Shaoyang Liu,et al.  Application of AFM in microbiology: a review. , 2010, Scanning.

[22]  Jian-Bin Zhou,et al.  Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects , 2009, Sensors.

[23]  Ali Meghdari,et al.  Nonlinear dynamic analysis of atomic force microscopy under deterministic and random excitation , 2008 .

[24]  Daniel J Müller,et al.  Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. , 2008, Nature nanotechnology.

[25]  Shenjie Zhou,et al.  The size-dependent natural frequency of Bernoulli–Euler micro-beams , 2008 .

[26]  R. Stark,et al.  Chaos in dynamic atomic force microscopy , 2006, Nanotechnology.

[27]  Eden S. H. Yu,et al.  Tourism, Jobs, Capital Accumulation and the Economy: A Dynamic Analysis , 2005 .

[28]  N. Jalili,et al.  A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences , 2004 .

[29]  John T. Katsikadelis,et al.  Non-linear dynamic analysis of beams with variable stiffness , 2004 .

[30]  Sebastian Rützel,et al.  Nonlinear dynamics of atomic–force–microscope probes driven in Lennard–Jones potentials , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  Fan Yang,et al.  Experiments and theory in strain gradient elasticity , 2003 .

[32]  Stephen W. Howell,et al.  Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment , 2002 .

[33]  Y. Isono,et al.  Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM , 2000, Journal of Microelectromechanical Systems.

[34]  M. Dahleh,et al.  Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy , 1999 .

[35]  Anthony G. Evans,et al.  A microbend test method for measuring the plasticity length scale , 1998 .

[36]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[37]  V. Elings,et al.  Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy , 1993 .

[38]  Hemantha K. Wickramasinghe,et al.  Atomic force microscope–force mapping and profiling on a sub 100‐Å scale , 1987 .

[39]  C. Liauh,et al.  Frequency shifts and analytical solutions of an AFM curved beam , 2014 .

[40]  J. Srinivas,et al.  Modeling of AFM Microcantilevers Operating in Tapping Mode , 2012 .

[41]  P. Hansma,et al.  Atomic force microscopy , 1990, Nature.

[42]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.