Gradient-Type Algorithms for Partial Singular Value Decomposition

It is often desirable to calculate only a few terms of the SVD expansion of a matrix, corresponding to the largest or smallest singular values. Two algorithms, based on gradient and conjugate gradient search, are proposed for this purpose. SVD is computed term by term in a decreasing or increasing order of singular values. The algorithms are simple to implement and are especially advantageous with large matrices.

[1]  H. Rutishauser Computational aspects of F. L. Bauer's simultaneous iteration method , 1969 .

[2]  P. Will,et al.  A grid - coded technique for recording 3 - dimensional scenes illuminated with ambient light , 1970 .

[3]  V. Pisarenko On the Estimation of Spectra by Means of Non-linear Functions of the Covariance Matrix , 1972 .

[4]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[5]  A. Gourlay,et al.  Computational Methods for Matrix Eigenproblems , 1973 .

[6]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[7]  A. Laub,et al.  The singular value decomposition: Its computation and some applications , 1980 .

[8]  Jan J. Gerbrands,et al.  On the relationships between SVD, KLT and PCA , 1981, Pattern Recognit..

[9]  Seymour Shlien,et al.  A Method for Computing the Partial Singular Value Decomposition , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  B. V. K. Vijaya Kumar,et al.  Efficient Calculation of Primary Images from a Set of Images , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  R. Kumaresan,et al.  Singular value decomposition and improved frequency estimation using linear prediction , 1982 .

[12]  Jeffrey L. Posdamer,et al.  Surface measurement by space-encoded projected beam systems , 1982, Comput. Graph. Image Process..

[13]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[14]  E Hierholzer,et al.  Rasterstereography: a photogrammetric method for measurement of body surfaces. , 1983, Journal of biological photography.

[15]  Erkki Oja,et al.  Subspace methods of pattern recognition , 1983 .

[16]  J. Cadzow,et al.  Singular-value decomposition approach to time series modelling , 1983 .

[17]  Bede Liu,et al.  An iterative algorithm for locating the minimal eigenvector of a symmetric matrix , 1984, ICASSP.

[18]  Juha Karhunen,et al.  Adaptive algorithms for estimating eigenvectors of correlation type matrices , 1984, ICASSP.

[19]  Konstantinos Konstantinides,et al.  Applications of singular value decomposition to system modeling in signal processing , 1984, ICASSP.

[20]  Soheil A. Dianat,et al.  Adaptive spectral estimation by the conjugate gradient method , 1985, ICASSP.

[21]  Tapan K. Sarkar,et al.  Adaptive spectral estimation by the conjugate gradient method , 1986, IEEE Trans. Acoust. Speech Signal Process..

[22]  B. AfeArd CALCULATING THE SINGULAR VALUES AND PSEUDOINVERSE OF A MATRIX , 2022 .