Studies on Ti-Zr-Cr-Mn-Fe-V based alloys for hydrogen compression under mild thermal conditions of water bath

[1]  L. Anovitz,et al.  Isotherm measurements of high-pressure metal hydrides for hydrogen compressors , 2021 .

[2]  Shumao Wang,et al.  Investigation on Ti–Zr–Cr–Fe–V based alloys for metal hydride hydrogen compressor at moderate working temperatures , 2021 .

[3]  E. A. Kumar,et al.  Performance investigation of a two-stage sorption hydrogen compressor , 2021, International Journal of Hydrogen Energy.

[4]  Panpan Zhou,et al.  Development of Ti-Zr-Mn-Cr-V based alloys for high-density hydrogen storage , 2021 .

[5]  V. Sharma,et al.  Performance investigation of a multi-stage sorption hydrogen compressor , 2021, International Journal of Hydrogen Energy.

[6]  F. Cuevas,et al.  Experimental behaviour of a three-stage metal hydride hydrogen compressor , 2020, Journal of Physics: Energy.

[7]  M. Lototskyy,et al.  Metal hydride hydrogen compressors for energy storage systems: layout features and results of long-term tests , 2020, Journal of Physics: Energy.

[8]  C. Corgnale,et al.  High pressure thermal hydrogen compression employing Ti1.1CrMn metal hydride material , 2019, Journal of Physics: Energy.

[9]  D. Book,et al.  Development of a high-pressure Ti-Mn based hydrogen storage alloy for hydrogen compression , 2019, Renewable Energy.

[10]  Naruki Endo,et al.  Evaluation of a BCC alloy as metal hydride compressor via 100 MPa-class high-pressure hydrogen apparatus , 2019, International Journal of Hydrogen Energy.

[11]  Alastair D. Stuart,et al.  Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives , 2019, International Journal of Hydrogen Energy.

[12]  G. Maranzana,et al.  Review of the current technologies and performances of hydrogen compression for stationary and automotive applications , 2019, Renewable and Sustainable Energy Reviews.

[13]  F. Cuevas,et al.  Simulation and design of a three-stage metal hydride hydrogen compressor based on experimental thermodynamic data , 2018 .

[14]  A. Jain,et al.  Study of cyclic performance of V-Ti-Cr alloys employed for hydrogen compressor , 2018 .

[15]  Z. Yao,et al.  Effect of rare earth doping on the hydrogen storage performance of Ti 1.02 Cr 1.1 Mn 0.3 Fe 0.6 alloy for hybrid hydrogen storage application , 2018 .

[16]  Lixian Sun,et al.  Composition design of Ti-Cr-Mn-Fe alloys for hybrid high-pressure metal hydride tanks , 2015 .

[17]  Min Zhu,et al.  Advanced high-pressure metal hydride fabricated via Ti–Cr–Mn alloys for hybrid tank , 2015 .

[18]  Bruno G. Pollet,et al.  Metal hydride hydrogen compressors: A review , 2014 .

[19]  Xiulin Fan,et al.  Development of Ti–Cr–Mn–Fe based alloys with high hydrogen desorption pressures for hybrid hydrogen storage vessel application , 2013 .

[20]  Chandima Gomes,et al.  Hydrogen as an energy carrier: Prospects and challenges , 2012 .

[21]  Jing Li,et al.  Extraordinary catalytic effect of Laves phase Cr and Mn alloys on hydrogen dissociation and absorption , 2012 .

[22]  Xinhua Wang,et al.  A 70 MPa hydrogen-compression system using metal hydrides , 2011 .

[23]  Shumao Wang,et al.  Laves phase hydrogen storage alloys for super-high-pressure metal hydride hydrogen compressors , 2011 .

[24]  Xinhua Wang,et al.  A study on 70 MPa metal hydride hydrogen compressor , 2010 .

[25]  K. Kim,et al.  Hydrogen compression characteristics of a dual stage thermal compressor system utilizing LaNi5 and Ca0.6Mm0.4Ni5 as the working metal hydrides , 2010 .

[26]  P. Kula,et al.  Research on compressor utilizing hydrogen storage materials for application in heat treatment facilities , 2009 .

[27]  Z. Dehouche,et al.  Experimental study on a metal hydride based hydrogen compressor , 2009 .

[28]  M. Balat Potential importance of hydrogen as a future solution to environmental and transportation problems , 2008 .

[29]  J. Tarascon,et al.  Improvement of hydrogen storage properties of the AB2 Laves phase alloys for automotive application , 2008 .

[30]  S. S. Murthy,et al.  Performance tests on a thermally operated hydrogen compressor , 2008 .

[31]  K. Kim,et al.  A hydrogen-compression system using porous metal hydride pellets of LaNi 5 - x Al x , 2008 .

[32]  Shuang Li,et al.  Investigation on high-pressure metal hydride hydrogen compressors , 2007 .

[33]  Xinhua Wang,et al.  Hydrogen storage properties of (La–Ce–Ca)Ni5 alloys and application for hydrogen compression , 2007 .

[34]  Z. Dehouche,et al.  Integrated electrolyser—metal hydride compression system , 2006 .

[35]  S. S. Murthy,et al.  Experiments on a metal hydride based hydrogen compressor , 2005 .

[36]  Tomoyuki Yokota,et al.  “Hybrid hydrogen storage vessel”, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material , 2003 .

[37]  Sang-Cheol Han,et al.  The thermodynamic properties of Ti–Zr–Cr–Mn Laves phase alloys , 2001 .

[38]  M. V. Lototsky,et al.  Sample pilot plant of industrial metal-hydridecompressor , 1999 .

[39]  Y. Lei,et al.  The recent research, development and industrial applications of metal hydrides in the People's Republic of China , 1997 .

[40]  Z. Ye,et al.  The Properties and Some Applications of the Hydride Hydrogen-Compression Alloy (CaMmCu)(NiAl)5Zr0.05* , 1994 .

[41]  C. E. Lundin,et al.  A correlation between the interstitial hole sizes in intermetallic compounds and the thermodynamic properties of the hydrides formed from those compounds , 1977 .

[42]  H. H. V. Mal A LaNi5‐Hydride Thermal Absorption Compressor for a Hydrogen Refrigerator , 1973 .