Deterministic global optimization of molecular structures using interval analysis

The search for the global minimum of a molecular potential energy surface is a challenging problem. The molecular structure corresponding to the global minimum is of particular importance because it usually dictates both the physical and chemical properties of the molecule. The existence of an extremely large number of local minima, the number of which may increase exponentially with the size of the molecule, makes this global minimization problem extremely difficult. A new strategy is described here for solving such global minimization problems deterministically. The methodology is based on interval analysis, and provides a mathematical and computational guarantee that the molecular structure with the global minimum potential energy will be found. The technique is demonstrated using two sets of example problems. The first set involves a relatively simple potential model, and problems with up to 40 atoms. The second set involves a more realistic potential energy function, representative of those in current use, and problems with up to 11 atoms. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 1413–1420, 2005

[1]  Alexander D. MacKerell Empirical force fields for biological macromolecules: Overview and issues , 2004, J. Comput. Chem..

[2]  Alexis T. Bell,et al.  Sorption Thermodynamics, Siting, and Conformation of Long n-Alkanes in Silicalite As Predicted by Configurational-Bias Monte Carlo Integration , 1995 .

[3]  Vladik Kreinovich,et al.  COMPUTING EXACT COMPONENTWISE BOUNDS ON SOLUTIONS OF LINEAR SYSTEMS WITH INTERVAL DATA IS NP-HARD∗ , 1995 .

[4]  A. Neumaier Interval methods for systems of equations , 1990 .

[5]  C. Adjiman,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .

[6]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[7]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid hydrocarbons , 1984 .

[8]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[9]  H. Scheraga,et al.  On the multiple-minima problem in the conformational analysis of molecules: deformation of the potential energy hypersurface by the diffusion equation method , 1989 .

[10]  Youdong Lin,et al.  Locating stationary points of sorbate-zeolite potential energy surfaces using interval analysis , 2004 .

[11]  A. Leach A Survey of Methods for Searching the Conformational Space of Small and Medium‐Sized Molecules , 1992 .

[12]  Youdong Lin,et al.  LP strategy for the interval-Newton method in deterministic global optimization , 2004 .

[13]  M. Moret,et al.  Stochastic molecular optimization using generalized simulated annealing , 1998, J. Comput. Chem..

[14]  Arnold Neumaier,et al.  Molecular Modeling of Proteins and Mathematical Prediction of Protein Structure , 1997, SIAM Rev..

[15]  Christodoulos A Floudas,et al.  Global minimum potential energy conformations of small molecules , 1994, J. Glob. Optim..

[16]  David S. Johnson,et al.  Dimacs series in discrete mathematics and theoretical computer science , 1996 .

[17]  Carlile Lavor A deterministic approach for global minimization of molecular potential energy functions , 2003 .

[18]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[19]  Harold A. Scheraga,et al.  Structure and free energy of complex thermodynamic systems , 1988 .

[20]  H. Bradford Thompson,et al.  Calculation of Cartesian Coordinates and Their Derivatives from Internal Molecular Coordinates , 1967 .

[21]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[22]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[23]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[24]  John L. Klepeis,et al.  Predicting solvated peptide conformations via global minimization of energetic atom-to-atom interactions , 1998 .

[25]  L. Piela,et al.  Molecular Dynamics on Deformed Potential Energy Hypersurfaces , 1995 .

[26]  Mark A. Stadtherr,et al.  New interval methodologies for reliable chemical process modeling , 2002 .

[27]  Ernö Pretsch,et al.  Application of genetic algorithms in molecular modeling , 1994, J. Comput. Chem..

[28]  Y. Lin,et al.  Advances in Interval Methods for Deterministic Global Optimization in Chemical Engineering , 2004, J. Glob. Optim..

[29]  M. Stadtherr,et al.  Deterministic global optimization for error-in-variables parameter estimation , 2002 .

[30]  Harold A. Scheraga,et al.  Predicting Three-Dimensional Structures of Oligopeptides , 1993 .

[31]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid alkanes , 1978 .

[32]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.