NAClab: a Matlab toolbox for numerical algebraic computation

[1]  Jonathan D. Hauenstein,et al.  Software for numerical algebraic geometry: a paradigm and progress towards its implementation , 2008 .

[2]  Jan Verschelde,et al.  Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.

[3]  Zhonggang Zeng Computing multiple roots of inexact polynomials , 2005, Math. Comput..

[4]  Chris Peterson,et al.  A numerical-symbolic algorithm for computing the multiplicity of a component of an algebraic set , 2006, J. Complex..

[5]  Zhonggang Zeng A numerical elimination method for polynomial computations , 2008, Theor. Comput. Sci..

[6]  George Labahn,et al.  THE SNAP PACKAGE FOR ARITHMETIC WITH NUMERIC POLYNOMIALS , 2002 .

[7]  Zhonggang Zeng,et al.  Multiple zeros of nonlinear systems , 2011, Math. Comput..

[8]  Zhonggang Zeng,et al.  The approximate GCD of inexact polynomials Part II: a multivariate algorithm , 2004, ISSAC 2004.

[9]  Hans J. Stetter,et al.  Numerical polynomial algebra , 2004 .

[10]  Zhonggang Zeng,et al.  The approximate GCD of inexact polynomials , 2004, ISSAC '04.

[11]  Erich Kaltofen,et al.  Approximate factorization of multivariate polynomials via differential equations , 2004, ISSAC '04.

[12]  Erich Kaltofen,et al.  Challenges of Symbolic Computation: My Favorite Open Problems , 2000, J. Symb. Comput..

[13]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[14]  Stephen M. Watt,et al.  QR factoring to compute the GCD of univariate approximate polynomials , 2004, IEEE Transactions on Signal Processing.