Numerical ergodicity of two dimensional stochastic Navier-Stokes equations with Gaussian noise

[1]  Xiaojun Li,et al.  Uniform random attractors for 2D non-autonomous stochastic Navier-Stokes equations , 2021 .

[2]  D. Breit,et al.  Convergence rates for the numerical approximation of the 2D stochastic Navier–Stokes equations , 2019, Numerische Mathematik.

[3]  Xuerong Mao,et al.  Explicit numerical approximations for stochastic differential equations in finite and infinite horizons: truncation methods, convergence in pth moment, and stability , 2019 .

[4]  Jialin Hong,et al.  Weak convergence and invariant measure of a full discretization for non-globally Lipschitz parabolic SPDE , 2018, 1811.04075.

[5]  Siqing Gan,et al.  A full-discrete exponential Euler approximation of the invariant measure for parabolic stochastic partial differential equations , 2018, 1811.01759.

[6]  Jianhua Huang,et al.  Ergodicity of stochastic Magneto-Hydrodynamic equations driven by α-stable noise , 2017 .

[7]  Jialin Hong,et al.  Approximation of Invariant Measure for Damped Stochastic Nonlinear Schrödinger Equation via an Ergodic Numerical Scheme , 2015, 1509.09148.

[8]  Charles-Edouard Bréhier,et al.  High Order Integrator for Sampling the Invariant Distribution of a Class of Parabolic Stochastic PDEs with Additive Space-Time Noise , 2015, SIAM J. Sci. Comput..

[9]  D. Breit,et al.  Stochastic Navier-Stokes equations for compressible fluids , 2014, 1409.2706.

[10]  Xiaojie Wang,et al.  Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus , 2014, 1408.0713.

[11]  Charles-Edouard Br'ehier,et al.  Approximation of the invariant law of SPDEs: error analysis using a Poisson equation for a full-discretization scheme , 2013, 1311.7030.

[12]  H. Bessaih,et al.  Splitting up method for the 2D stochastic Navier–Stokes equations , 2013, 1309.5633.

[13]  El.zbieta Motyl Stochastic hydrodynamic-type evolution equations driven by Lévy noise in 3D unbounded domains—Abstract framework and applications , 2013, 1306.5342.

[14]  Andreas Prohl,et al.  Time-Splitting Methods to Solve the Stochastic Incompressible Stokes Equation , 2012, SIAM J. Numer. Anal..

[15]  Andreas Prohl,et al.  Rates of Convergence for Discretizations of the Stochastic Incompressible Navier-Stokes Equations , 2012, SIAM J. Numer. Anal..

[16]  Charles-Edouard Bréhier,et al.  Approximation of the Invariant Measure with an Euler Scheme for Stochastic PDEs Driven by Space-Time White Noise , 2012, 1202.2707.

[17]  Yingchao Xie,et al.  Ergodicity of stochastic 2D Navier–Stokes equation with Lévy noise☆ , 2011 .

[18]  XIAOYUAN YANG,et al.  A Posteriori Error Estimates for Finite Element Approximation of Unsteady Incompressible Stochastic Navier-Stokes Equations , 2010, SIAM J. Numer. Anal..

[19]  Wei Wang,et al.  The approximation of a Crank-Nicolson scheme for the stochastic Navier-Stokes equations , 2009 .

[20]  Jonathan C. Mattingly,et al.  Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing , 2004, math/0406087.

[21]  Giuseppe Da Prato,et al.  Ergodicity for the 3D stochastic Navier–Stokes equations , 2003 .

[22]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[23]  Roger Temam,et al.  Navier-Stokes Equations and Turbulence by C. Foias , 2001 .

[24]  Franco Flandoli,et al.  Ergodicity of the 2-D Navier-Stokes equation under random perturbations , 1995 .

[25]  Franco Flandoli,et al.  Dissipativity and invariant measures for stochastic Navier-Stokes equations , 1994 .

[26]  A. Bensoussan,et al.  Equations stochastiques du type Navier-Stokes , 1973 .