Integration of resistive switching devices in crossbar structures

[1]  M. Kozicki,et al.  Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S solid electrolytes , 2005, Symposium Non-Volatile Memory Technology 2005..

[2]  D. Strukov,et al.  CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices , 2005 .

[3]  Liquid Injection Atomic Layer Deposition of Pb(Zr,Ti)O3 Thin Films on Three Dimensional Structures , 2007, 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics.

[4]  L. Holland,et al.  Vacuum deposition of thin films , 1956 .

[5]  R. Williams,et al.  Nano/CMOS architectures using a field-programmable nanowire interconnect , 2007 .

[6]  Gregory S. Snider,et al.  Spike-timing-dependent learning in memristive nanodevices , 2008, 2008 IEEE International Symposium on Nanoscale Architectures.

[7]  Sang-Gook Kim,et al.  Energy harvesting MEMS device based on thin film piezoelectric cantilevers , 2006 .

[8]  Jan Albers Grundlagen integrierter Schaltungen: Bauelemente und Mikrostrukturierung , 2010 .

[9]  Jack S Kilby,et al.  TURNING POTENTIAL INTO REALITIES: THE INVENTION OF THE INTEGRATED CIRCUIT , 2002 .

[10]  P.J. Kuekes,et al.  Nano state Machines using hysteretic resistors and diode crossbars , 2006, IEEE Transactions on Nanotechnology.

[11]  R. Williams,et al.  Defect-tolerant demultiplexer circuits based on threshold logic and coding. , 2009, Nanotechnology.

[12]  Warren Robinett,et al.  Defect-tolerant demultiplexers for nano-electronics constructed from error-correcting codes , 2005 .

[13]  Wei Wu,et al.  A hybrid nanomemristor/transistor logic circuit capable of self-programming , 2009, Proceedings of the National Academy of Sciences.

[14]  Seth Copen Goldstein,et al.  Molecular electronics: from devices and interconnect to circuits and architecture , 2003, Proc. IEEE.

[15]  Karen Maex,et al.  Influence of the electron mean free path on the resistivity of thin metal films , 2004 .

[16]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[17]  R. Waser,et al.  A Novel Reference Scheme for Reading Passive Resistive Crossbar Memories , 2006, IEEE Transactions on Nanotechnology.

[18]  Hiroshi Ishiwara,et al.  Current Status of Ferroelectric Random-Access Memory , 2004 .

[19]  R. Williams,et al.  Exponential ionic drift: fast switching and low volatility of thin-film memristors , 2009 .

[20]  R. Feder,et al.  Resistivity and Structure of Evaporated Aluminum Films , 1969 .

[21]  R. Williams,et al.  Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. , 2009, Small.

[22]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[23]  R. Waser,et al.  A Fundamental Analysis of Nano-Crossbars with Non-Linear Switching Materials and its Impact on TiO2 as a Resistive Layer , 2008, 2008 8th IEEE Conference on Nanotechnology.

[24]  U. Schmid The impact of thermal annealing and adhesion film thickness on the resistivity and the agglomeration behavior of titanium/platinum thin films , 2008 .

[25]  Shinji Matsui,et al.  Nanofabrication of grating and dot patterns by electron holographic lithography , 1995 .

[26]  P.J. Kuekes,et al.  Effect of Conductance Variability on Resistor-Logic Demultiplexers for Nanoelectronics , 2006, IEEE Transactions on Nanotechnology.

[27]  Byung Joon Choi,et al.  Identification of a determining parameter for resistive switching of TiO2 thin films , 2005 .

[28]  Dongmok Whang,et al.  Large-scale hierarchical organization of nanowire arrays for integrated nanosystems , 2003 .

[29]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[30]  W. Steinhögl,et al.  Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller , 2005 .

[32]  E. H. Sondheimer,et al.  The mean free path of electrons in metals , 1952 .

[33]  R. Williams,et al.  Improved voltage margins using linear error-correcting codes in resistor-logic demultiplexers for nanoelectronics , 2005 .

[34]  G. Seroussi,et al.  Resistor-logic demultiplexers for nanoelectronics based on constant-weight codes. , 2006, Nanotechnology.

[35]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[36]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[37]  R. Waser,et al.  Liquid Injection Atomic Layer Deposition of TiO x Films Using Ti [ OCH ( CH3 ) 2 ] 4 , 2007 .

[38]  Franz J. Giessibl,et al.  Advances in atomic force microscopy , 2003, cond-mat/0305119.

[39]  Rainer Waser,et al.  Nanoimprint for future non-volatile memory and logic devices , 2008 .

[40]  Walter Riess,et al.  Silicon nanowire tunneling field-effect transistors , 2008 .

[41]  F. Argall Switching phenomena in titanium oxide thin films , 1968 .

[42]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[43]  R. Waser,et al.  Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere , 2008 .

[44]  M. Shatzkes,et al.  Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces , 1970 .

[45]  W. E. Beadle,et al.  Switching properties of thin Nio films , 1964 .

[46]  I. Yoo,et al.  Electromigration effect of Ni electrodes on the resistive switching characteristics of NiO thin films , 2007 .

[47]  S. O. Park,et al.  Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[48]  G. Schindler,et al.  Scaling laws for the resistivity increase of sub-100 nm interconnects , 2003, International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003..

[49]  Douglas J. Thomson,et al.  Tip artifacts in atomic force microscope imaging of thin film surfaces , 1993 .

[50]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[51]  K. Tsunoda,et al.  Low Power and High Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3 V , 2007, 2007 IEEE International Electron Devices Meeting.

[52]  James R Heath,et al.  Whence Molecular Electronics? , 2004, Science.

[53]  Yu Lu,et al.  Memories of tomorrow , 2002 .

[54]  Jacob,et al.  Surface-roughness contributions to the electrical resistivity of polycrystalline metal films. , 1990, Physical review. B, Condensed matter.

[55]  André DeHon,et al.  Nanowire-based programmable architectures , 2005, JETC.

[56]  A. Fert,et al.  The emergence of spin electronics in data storage. , 2007, Nature materials.

[57]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[58]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[59]  S. Menzel,et al.  Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems , 2007 .

[60]  N. A. Surplice,et al.  The electrical resistivity and resistance-temperature characteristics of thin titanium films , 1972 .

[61]  W. Steinhögl,et al.  Size-dependent resistivity of metallic wires in the mesoscopic range , 2002 .

[62]  Warren Robinett,et al.  Experimental demonstration of a defect-tolerant nanocrossbar demultiplexer , 2008, Nanotechnology.

[63]  S. Shiratake,et al.  A 32Mb chain FeRAM with segment/stitch array architecture , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[64]  R. Waser,et al.  Nano-Crossbar Arrays for Nonvolatile Resistive RAM (RRAM) Applications , 2008, 2008 8th IEEE Conference on Nanotechnology.

[65]  Yu Huang,et al.  Nanowires for integrated multicolor nanophotonics. , 2004, Small.

[66]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[67]  T. W. Hickmott Electroluminescence, Bistable Switching, and Dielectric Breakdown of Nb2O5 Diodes , 1969 .

[68]  Manfred von Ardenne,et al.  Das Elektronen-Rastermikroskop , 1938 .

[69]  Manfred Engelhardt,et al.  Impact of line edge roughness on the resistivity of nanometer-scale interconnects , 2004 .

[70]  M. Kozicki,et al.  Bipolar and Unipolar Resistive Switching in Cu-Doped $ \hbox{SiO}_{2}$ , 2007, IEEE Transactions on Electron Devices.

[71]  D. Stewart,et al.  The crossbar latch: Logic value storage, restoration, and inversion in crossbar circuits , 2005 .

[72]  M. Welland,et al.  Size effects in the electrical resistivity of polycrystalline nanowires , 2000 .

[73]  Rainer Waser,et al.  Design and analysis of future memories based on switchable resistive elements , 2006 .

[74]  K. Jousten Wutz Handbuch Vakuumtechnik : Theorie und Praxis , 2004 .

[75]  R. Waser,et al.  Resistive switching in electrochemical metallization memory cells , 2009 .

[76]  R. Waser,et al.  Phenomenological considerations of resistively switching TiO2 in nano crossbar arrays , 2009, 2009 10th International Conference on Ultimate Integration of Silicon.

[77]  G. Snider,et al.  Computing with hysteretic resistor crossbars , 2005 .

[78]  D. Strukov,et al.  CMOL: Devices, Circuits, and Architectures , 2006 .

[79]  R. Waser,et al.  Electrical properties of Pt interconnects for passive crossbar memory arrays , 2009 .

[80]  Rainer Waser,et al.  Impedance spectroscopy of TiO2 thin films showing resistive switching , 2006 .

[81]  G. Seroussi,et al.  Defect-tolerant interconnect to nanoelectronic circuits: internally redundant demultiplexers based on error-correcting codes , 2005 .

[82]  Paul-Peter Sotiriadis Information capacity of nanowire crossbar switching networks , 2006, IEEE Transactions on Information Theory.

[83]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[84]  Mario Birkholz,et al.  Thin Film Analysis by X-Ray Scattering , 2005 .

[85]  R. Waser,et al.  A Nonvolatile Memory With Resistively Switching Methyl-Silsesquioxane , 2009, IEEE Electron Device Letters.

[86]  C. Lieber,et al.  Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems , 2003, Science.

[87]  U. Schmid,et al.  Influence of thermal annealing on the resistivity of titanium/platinum thin films , 2006 .

[88]  T.G. Noll,et al.  Fundamental analysis of resistive nano-crossbars for the use in hybrid Nano/CMOS-memory , 2007, ESSCIRC 2007 - 33rd European Solid-State Circuits Conference.

[89]  Warren Robinett,et al.  Defect tolerance in resistor-logic demultiplexers for nanoelectronics. , 2006, Nanotechnology.

[90]  Xing Zhang,et al.  Influence of grain boundary scattering on the electrical properties of platinum nanofilms , 2006 .

[91]  Karen Maex,et al.  Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions , 2004 .

[92]  L. Chua Memristor-The missing circuit element , 1971 .

[93]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[94]  Doo Seok Jeong,et al.  Resistive switching in a Pt/TiO2/Pt thin film stack -- a candidate for a non-volatile ReRAM , 2007 .

[95]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[96]  R. J. Luyken,et al.  Concepts for hybrid CMOS-molecular non-volatile memories , 2003 .

[97]  G. C. Danielson,et al.  Thermal Diffusivity of Platinum from 300° to 1200°K , 1964 .

[98]  Klaus Fuchs,et al.  The conductivity of thin metallic films according to the electron theory of metals , 1938, Mathematical Proceedings of the Cambridge Philosophical Society.

[99]  R. Cavin,et al.  Nanodevices: charge of the heavy brigade. , 2008, Nature nanotechnology.