Second-order gravitational effects of local inhomogeneities on cmb anisotropies and non-gaussian signatures

Based on the second-order nonlinear theory of perturbations in nonzero $\ensuremath{\Lambda}$ flat cosmological models, we study the gravitational effects of local inhomogeneities on cosmic microwave background (CMB) anisotropies. As the local inhomogeneities we consider first large-scale dipole and quadrupole distributions of galaxies around us and next an isolated cluster-scale matter distribution. It is found that, due to the second-order integral Sachs-Wolfe effect, the north-south asymmetry of CMB anisotropies and non-Gaussian signatures (in terms of scale-dependent estimators of kurtosis) in a spotlike object are caused from these matter distributions along light paths. Our theoretical results seem to be consistent with recent various observational results which have been shown by Hansen et al., Eriksen et al., Vielva et al. and Cruz et al.

[1]  K. Tomita Second-order gravitational effects of local inhomogeneities on CMB anisotropies in nonzero-Lambda flat cosmological models , 2005, astro-ph/0505157.

[2]  K. Tomita Relativistic second-order perturbations of nonzero-{lambda} flat cosmological models and CMB anisotropies , 2005, astro-ph/0501663.

[3]  E. Komatsu,et al.  Non-Gaussianity from inflation: theory and observations , 2004, Physics Reports.

[4]  K. Gorski,et al.  Cosmological parameters and the WMAP data revisited , 2004, astro-ph/0406232.

[5]  F. Hansen,et al.  Asymmetries in the Local Curvature of the Wilkinson Microwave Anisotropy Probe Data , 2004 .

[6]  E.Martinez-Gonzalez,et al.  Detection of a non‐Gaussian spot in WMAP , 2004, astro-ph/0405341.

[7]  P. Lilje,et al.  Asymmetries in the Cosmic Microwave Background Anisotropy Field , 2004 .

[8]  K. Gorski,et al.  Testing the cosmological principle of isotropy: Local power spectrum estimates of the WMAP data , 2004, astro-ph/0404206.

[9]  F. Hansen,et al.  Asymmetries in the local curvature of the WMAP data , 2004, astro-ph/0402396.

[10]  P. Lilje,et al.  Testing for Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe Data: Minkowski Functionals and the Length of the Skeleton , 2004, astro-ph/0401276.

[11]  R. B. Barreiro,et al.  Detection of Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe First-Year Data Using Spherical Wavelets , 2003, astro-ph/0310273.

[12]  P. Lilje,et al.  Asymmetries in the CMB anisotropy field , 2003, astro-ph/0307507.

[13]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[14]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[15]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Tests of Gaussianity , 2003, astro-ph/0302223.

[16]  L. Cayón,et al.  The performance of spherical wavelets to detect non‐Gaussianity in the cosmic microwave background sky , 2001, astro-ph/0111284.

[17]  A. Liddle,et al.  Cosmological Inflation and Large-Scale Structure: Preface , 2000 .

[18]  Y. Suto Exploring Nonlinear Gravitational Clustering Phenomena with Cosmological N-Body Simulations , 1993 .