Cerebral capillary flow imaging by wavelength‐division‐multiplexing swept‐source optical Doppler tomography

Swept-source-based optical coherence tomography (SS-OCT) has demonstrated the unique advantages for fast imaging rate and long imaging distance; however, limited axial resolution and complex phase noises restrict swept-source optical Doppler tomography (SS-ODT) for quantitative capillary blood flow imaging in the deep cortices. Here, the wavelength-dividing-multiplexing optical Doppler tomography (WDM-ODT) method that divides a single interferogram into multiple phase-correlated interferograms is proposed to effectively enhance the sensitivity for cerebral capillary flow imaging. Both flow phantom and in vivo mouse brain imaging studies show that WDM-ODT is able to significantly suppress background phase noise and image cerebral capillary flow down to the vessel size of 5.6 μm. Comparison between the wavelength-division-multiplexing SS-ODT and the spectral-domain ultrahigh-resolution ODT (uODT) reveals that SS-ODT outpaces uODT by extending the capillary flow imaging depth to 1.6 mm in mouse cortex. Thus, for the first time, quantitative capillary flow imaging is demonstrated using SS-ODT in the deep cortex.

[1]  T. Järvinen,et al.  Deep Vascular Imaging in Wounds by Two-Photon Fluorescence Microscopy , 2013, PloS one.

[2]  Benjamin J Vakoc,et al.  Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging , 2009, Nature Medicine.

[3]  J. Fujimoto,et al.  Cubic meter volume optical coherence tomography. , 2016, Optica.

[4]  Yu Gan,et al.  Phase-noise analysis of swept-source optical coherence tomography systems. , 2017, Optics letters.

[5]  R. Huber,et al.  Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. , 2011, Optics express.

[6]  F. Wise,et al.  In vivo three-photon microscopy of subcortical structures within an intact mouse brain , 2012, Nature Photonics.

[7]  Ruikang K. Wang,et al.  Optical coherence tomography based angiography [Invited]. , 2017, Biomedical optics express.

[8]  S A Boppart,et al.  Optical coherence tomography for neurosurgical imaging of human intracortical melanoma. , 1998, Neurosurgery.

[9]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[10]  Gangjun Liu,et al.  Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging , 2011, Optics express.

[11]  A. Al-Mujaini,et al.  Optical coherence tomography: clinical applications in medical practice. , 2013, Oman medical journal.

[12]  Huikai Xie,et al.  Refractive index measurement of acute rat brain tissue slices using optical coherence tomography , 2012, Optics express.

[13]  Scott Barry,et al.  OCT methods for capillary velocimetry , 2012, Biomedical optics express.

[14]  Siavash Yazdanfar,et al.  Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound. , 2005, Optics express.

[15]  J. Schmitt,et al.  Speckle in optical coherence tomography. , 1999, Journal of biomedical optics.

[16]  Sava Sakadžić,et al.  Multiparametric, Longitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke , 2013, PloS one.

[17]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[18]  Kicheon Park,et al.  Cerebrovascular adaptations to cocaine-induced transient ischemic attacks in the rodent brain. , 2017, JCI insight.

[19]  Ruikang K. Wang,et al.  Review of optical coherence tomography based angiography in neuroscience , 2016, Neurophotonics.

[20]  Martin F. Kraus,et al.  Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT , 2011, Biomedical optics express.

[21]  N. Volkow,et al.  Cocaine-induced cortical microischemia in the rodent brain: clinical implications , 2012, Molecular Psychiatry.

[22]  Pai-Yen Chen,et al.  Dielectric Antireflection Fiber Arrays for Absorption Enhancement in Thin-Film Organic Tandem Solar Cells , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  W. Drexler,et al.  Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length. , 2014, Optics express.

[24]  Daniel L Marks,et al.  Optical probes and techniques for molecular contrast enhancement in coherence imaging. , 2005, Journal of biomedical optics.

[25]  J. Izatt,et al.  Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography. , 1998, Optics letters.

[26]  Chen D. Lu,et al.  Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source. , 2013, Optics letters.

[27]  Shaozhen Song,et al.  Robust numerical phase stabilization for long‐range swept‐source optical coherence tomography , 2017, Journal of biophotonics.

[28]  Martin F. Kraus,et al.  Split-spectrum amplitude-decorrelation angiography with optical coherence tomography , 2012, Optics express.

[29]  Philip Wijesinghe,et al.  Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins. , 2016, Biomedical optics express.

[30]  J. Fujimoto,et al.  High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source. , 2013, Optics letters.

[31]  Yingtian Pan,et al.  High-speed swept source optical coherence Doppler tomography for deep brain microvascular imaging , 2016, Scientific Reports.

[32]  Julius Pekar,et al.  High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance. , 2003, Optics express.