Characterization of nanoporous materials from adsorption and desorption isotherms

[1]  Alexander V. Neimark,et al.  Capillary condensation in MMS and pore structure characterization , 2001 .

[2]  J. Coulomb,et al.  Dynamic and structural properties of confined phases (hydrogen, methane and water) in MCM-41 samples (19 Å, 25 Å and 40 Å). , 2000 .

[3]  A. Neimark,et al.  Adsorption hysteresis in nanopores , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  M. Jaroniec,et al.  Characterization of the Porous Structure of SBA-15 , 2000 .

[5]  M. Okazaki,et al.  Modeling Capillary Condensation in Cylindrical Nanopores: A Molecular Dynamics Study , 2000 .

[6]  Z. Palmowski in a , 2000 .

[7]  M. Jaroniec,et al.  Accurate Method for Calculating Mesopore Size Distributions from Argon Adsorption Data at 87 K Developed Using Model MCM-41 Materials , 2000 .

[8]  N. Melosh,et al.  Direct incorporation of A1 in SBA mesoporous materials: characterization, stability and catalytic activity , 2000 .

[9]  K. Gubbins,et al.  Phase separation in confined systems , 1999 .

[10]  D. Zhao,et al.  Evaluating Pore Sizes in Mesoporous Materials: A Simplified Standard Adsorption Method and a Simplified Broekhoff−de Boer Method , 1999 .

[11]  F. Renzo,et al.  Micelle-templated silicates as a test bed for methods of mesopore size evaluation , 1999 .

[12]  A. Neimark,et al.  Pore Size Analysis of MCM-41 Type Adsorbents by Means of Nitrogen and Argon Adsorption. , 1998, Journal of colloid and interface science.

[13]  K. Sing,et al.  Adsorption by Powders and Porous Solids: Principles, Methodology and Applications , 1998 .

[14]  S. Bhatia,et al.  Adsorption in mesopores: a molecular-continuum model with application to MCM-41 , 1998 .

[15]  A. Neimark,et al.  Density functional theory model for calculating pore size distributions: pore structure of nanoporous catalysts , 1998 .

[16]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[17]  K. Morishige,et al.  Adsorption hysteresis and pore critical temperature in a single cylindrical pore , 1998 .

[18]  K. Kaneko,et al.  Prediction of Hysteresis Disappearance in the Adsorption Isotherm of N2 on Regular Mesoporous Silica , 1998 .

[19]  K. Gubbins,et al.  Characterization of Porous Glasses: Simulation Models, Adsorption Isotherms, and the Brunauer−Emmett−Teller Analysis Method , 1998 .

[20]  M. Jaroniec,et al.  Characterization of Large-Pore MCM-41 Molecular Sieves Obtained via Hydrothermal Restructuring , 1997 .

[21]  A. Neimark,et al.  Evaluation of Pore Structure Parameters of MCM-41 Catalyst Supports and Catalysts by Means of Nitrogen and Argon Adsorption , 1997 .

[22]  J. P. Olivier,et al.  Characterization of MCM-41 Using Molecular Simulation: Heterogeneity Effects , 1997 .

[23]  M. Jaroniec,et al.  Adsorption Study of Surface and Structural Properties of MCM-41 Materials of Different Pore Sizes , 1997 .

[24]  W. Steele,et al.  Equilibria and dynamics of gas adsorption on heterogeneous solid surfaces , 1997 .

[25]  Q. Huo,et al.  Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials , 1996 .

[26]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[27]  A. Neimark,et al.  Capillary Hysteresis in Nanopores: Theoretical and Experimental Studies of Nitrogen Adsorption on MCM-41 , 1995 .

[28]  F. Renzo,et al.  Improved stability of MCM-41 through textural control , 1994 .

[29]  K. Sing,et al.  Physisorption of argon, nitrogen and oxygen by MCM-41, a model mesoporous adsorbent , 1994 .

[30]  Adsorption on MCM-41 mesoporous molecular sieves. Part 1.—Nitrogen isotherms and parameters of the porous structure , 1994 .

[31]  R. Siegel Characterization of porous solids II: F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing and K.K. Unger, eds., Elsevier, Amsterdam, 1991, 782 pages, $243.00 , 1993 .

[32]  Yoshiaki Fukushima,et al.  Synthesis of highly ordered mesoporous materials from a layered polysilicate , 1993 .

[33]  U. Marconi,et al.  Pore‐end effects on adsorption hysteresis in cylindrical and slitlike pores , 1992 .

[34]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[35]  D. Henderson Fundamentals of Inhomogeneous Fluids , 1992 .

[36]  R. Evans REVIEW ARTICLE: Fluids adsorbed in narrow pores: phase equilibria and structure , 1990 .

[37]  J. Mann,et al.  Molecule-micropore interaction potentials , 1988 .

[38]  P. Tarazona,et al.  Phase equilibria of fluid interfaces and confined fluids , 1987 .

[39]  P. Tarazona,et al.  Capillary condensation and adsorption in cylindrical and slit-like pores , 1986 .

[40]  L. I. Kataeva,et al.  Capillary effects and information concerning the pore structure of adsorbents: 1. Adsorption and capillary vaporization of nitrogen from adsorbent mesopores , 1977 .

[41]  M. W. Cole,et al.  Excitation Spectrum and Thermodynamic Properties of Liquid Films in Cylindrical Pores , 1974 .

[42]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[43]  J. Boer,et al.  Studies on pore systems in catalysts: IX. Calculation of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores A. Fundamental equations , 1967 .

[44]  E. Alison Flood,et al.  The solid-gas interface, , 1967 .

[45]  E. Barrett,et al.  (CONTRIBUTION FROM THE MULTIPLE FELLOWSHIP OF BAUGH AND SONS COMPANY, MELLOX INSTITUTE) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms , 1951 .

[46]  Leonard H. Cohan,et al.  Sorption Hysteresis and the Vapor Pressure of Concave Surfaces , 1938 .