A trajectorial interpretation of the dissipations of entropy and Fisher information for stochastic differential equations

The dissipation of general convex entropies for continuous time Markov processes can be described in terms of backward martingales with respect to the tail filtration. The relative entropy is the expected value of a backward submartingale. In the case of (non necessarily reversible) Markov diffusion processes, we use Girsanov theory to explicit the Doob-Meyer decomposition of this submartingale. We deduce a stochastic analogue of the well known entropy dissipation formula, which is valid for general convex entropies, including the total variation distance. Under additional regularity assumptions, and using It\^o's calculus and ideas of Arnold, Carlen and Ju \cite{Arnoldcarlenju}, we obtain moreover a new Bakry Emery criterion which ensures exponential convergence of the entropy to $0$. This criterion is non-intrisic since it depends on the square root of the diffusion matrix, and cannot be written only in terms of the diffusion matrix itself. We provide examples where the classic Bakry Emery criterion fails, but our non-intrisic criterion applies without modifying the law of the diffusion process.

[1]  Djalil CHAFAÏ Entropies, convexity, and functional inequalities , 2002 .

[2]  U. Haussmann,et al.  TIME REVERSAL OF DIFFUSIONS , 1986 .

[3]  Hans Föllmer,et al.  Time reversal on Wiener space , 1986 .

[4]  Djalil CHAFAÏ Entropies, convexity, and functional inequalities : On Phi-entropies and Phi-Sobolev inequalities , 2004 .

[5]  D. Stroock,et al.  Logarithmic Sobolev inequalities and stochastic Ising models , 1987 .

[6]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[7]  C. Hwang,et al.  Accelerating diffusions , 2005, math/0505245.

[8]  P. Cattiaux,et al.  Minimization of the Kullback information of diffusion processes , 1994 .

[9]  Nicolas Bouleau,et al.  Dirichlet Forms and Analysis on Wiener Space , 1991 .

[10]  H. Föllmer,et al.  Time reversal of infinite-dimensional diffusions , 1986 .

[11]  Giuseppe Toscani,et al.  ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .

[12]  Annie Millet,et al.  Integration by Parts and Time Reversal for Diffusion Processes , 1989 .

[13]  C. Hwang,et al.  Accelerating Gaussian Diffusions , 1993 .

[14]  P. Cattiaux A Pathwise Approach of Some Classical Inequalities , 2004 .

[15]  Qiangchang Ju,et al.  Large-time behavior of non-symmetric Fokker-Planck type equations , 2008 .

[16]  D. Stroock,et al.  Applications of the Malliavin calculus. II , 1985 .

[17]  É. Pardoux,et al.  Grossissement d'une filtration et retournement du temps d'une diffusion , 1986 .

[18]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[19]  J. Jacod Calcul stochastique et problèmes de martingales , 1979 .

[20]  国田 寛 Stochastic flows and stochastic differential equations , 1990 .