An Introduction to the Computational Complexity of Matrix Multiplication

This article introduces the approach on studying the computational complexity of matrix multiplication by ranks of the matrix multiplication tensors. Basic results and recent developments in this area are reviewed.

[1]  A. Smirnov,et al.  The bilinear complexity and practical algorithms for matrix multiplication , 2013 .

[2]  J. Landsberg Tensors: Geometry and Applications , 2011 .

[3]  L. R. Kerr,et al.  On Minimizing the Number of Multiplications Necessary for Matrix Multiplication , 1969 .

[4]  N. Gastinel,et al.  Sur le calcul des produits de matrices , 1971 .

[5]  Markus Bläser Lower bounds for the multiplicative complexity of matrix multiplication , 1999, computational complexity.

[7]  J. Landsberg The border rank of the multiplication of 2×2 matrices is seven , 2005 .

[8]  Johan Håstad Tensor Rank is NP-Complete , 1990, J. Algorithms.

[9]  François Le Gall,et al.  Powers of tensors and fast matrix multiplication , 2014, ISSAC.

[10]  Noga Alon,et al.  On sunflowers and matrix multiplication , 2012, 2012 IEEE 27th Conference on Computational Complexity.

[11]  Grazia Lotti,et al.  O(n2.7799) Complexity for n*n Approximate Matrix Multiplication , 1979, Inf. Process. Lett..

[12]  Markus Bläser A 5/2 n2-Lower Bound for the Rank of n×n Matrix Multiplication over Arbitrary Fields , 1999, FOCS.

[13]  Thomas Lickteig Typical tensorial rank , 1985 .

[14]  Emanuele Raviolo,et al.  The Rank of $n\times n$ Matrix Multiplication is at least 3n^2-2\sqrt{2}n^3/2-3n , 2012 .

[15]  Riko Jacob,et al.  Fast Output-Sensitive Matrix Multiplication , 2015, ESA.

[16]  Gene H. Golub,et al.  Matrix computations , 1983 .

[17]  Christopher Umans,et al.  Group-theoretic Algorithms for Matrix Multiplication , 2005, FOCS.

[18]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[19]  Victor Y. Pan,et al.  Strassen's algorithm is not optimal trilinear technique of aggregating, uniting and canceling for constructing fast algorithms for matrix operations , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[20]  J. M. Landsberg,et al.  On the geometry of border rank algorithms for matrix multiplication and other tensors with symmetry , 2016, ArXiv.

[21]  Arnold Schönhage,et al.  Partial and Total Matrix Multiplication , 1981, SIAM J. Comput..

[22]  John E. Hopcroft,et al.  Duality Applied to the Complexity of Matrix Multiplication and Other Bilinear Forms , 1973, SIAM J. Comput..

[23]  Shmuel Winograd,et al.  On multiplication of 2 × 2 matrices , 1971 .

[24]  Dario Bini Relations between exact and approximate bilinear algorithms. Applications , 1980 .

[25]  Julian D. Laderman,et al.  A noncommutative algorithm for multiplying $3 \times 3$ matrices using 23 multiplications , 1976 .

[26]  Teofilo F. Gonzalez,et al.  On the Complexity of Computing Bilinear Forms with {0, 1} Constants , 1980, J. Comput. Syst. Sci..

[27]  Don Coppersmith,et al.  On the Asymptotic Complexity of Matrix Multiplication , 1982, SIAM J. Comput..

[28]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[29]  Victor Y. Pan,et al.  Field extension and trilinear aggregating, uniting and canceling for the acceleration of matrix multiplications , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[30]  V. Strassen Rank and optimal computation of generic tensors , 1983 .

[31]  J. M. Landsberg,et al.  New Lower Bounds for the Border Rank of Matrix Multiplication , 2011, Theory Comput..

[32]  J. M. Landsberg,et al.  New Lower Bounds for the Rank of Matrix Multiplication , 2012, SIAM J. Comput..

[33]  Virginia Vassilevska Williams,et al.  Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.

[34]  P. Erdös,et al.  Intersection Theorems for Systems of Sets , 1960 .

[35]  Thomas Lickteig,et al.  A Note on Border Rank , 1984, Inf. Process. Lett..

[36]  Francesco Romani,et al.  Some Properties of Disjoint Sums of Tensors Related to Matrix Multiplication , 1982, SIAM J. Comput..

[37]  A. J. Stothers On the complexity of matrix multiplication , 2010 .

[38]  V. Strassen Gaussian elimination is not optimal , 1969 .

[39]  Markus Bläser,et al.  On the complexity of the multiplication of matrices of small formats , 2003, J. Complex..

[40]  Valery B. Alekseyev,et al.  On the Complexity of Some Algorithms of Matrix Multiplication , 1985, J. Algorithms.

[41]  Volker Strassen,et al.  The asymptotic spectrum of tensors and the exponent of matrix multiplication , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).