Blending margins: the modal logic K has nullary unification type

We investigate properties of the formula $p \to \Box p$ in the basic modal logic K. We show that K satisfies an infinitary weaker variant of the rule of margins $\phi \to \Box\phi / \phi, \neg\phi$, and as a consequence, we obtain various negative results about admissibility and unification in K. We describe a complete set of unifiers (i.e., substitutions making the formula provable) of $p \to \Box p$, and use it to establish that K has the worst possible unification type: nullary. In well-behaved transitive modal logics, admissibility and unification can be analyzed in terms of projective formulas, introduced by Ghilardi; in particular, projective formulas coincide for these logics with formulas that are admissibly saturated (i.e., derive all their multiple-conclusion admissible consequences) or exact (i.e., axiomatize a theory of a substitution). In contrast, we show that in K, the formula $p \to \Box p$ is admissibly saturated, but neither projective nor exact. All our results for K also apply to the basic description logic ALC.

[1]  Franz Baader,et al.  Unification in modal and description logics , 2011, Log. J. IGPL.

[2]  Franz Baader,et al.  Unification in the Description Logic EL , 2009, Description Logics.

[3]  Dick de Jongh Formulas of One Propositional Variable in Intuitionistic Arithmetic , 1982 .

[4]  Paliath Narendran,et al.  Unification Theory , 2001, Handbook of Automated Reasoning.

[5]  Franz Baader Description Logics , 2009, Reasoning Web.

[6]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[7]  Emil Jerábek,et al.  Bases of Admissible Rules of Lukasiewicz Logic , 2010, J. Log. Comput..

[8]  Timothy Williamson,et al.  Non-genuine MacIntosh logics , 1994, J. Philos. Log..

[9]  Timothy Williamson,et al.  An Alternative Rule of disjunction in modal logic , 1991, Notre Dame J. Formal Log..

[10]  Ian Horrocks,et al.  Description Logics , 2008, Handbook of Knowledge Representation.

[11]  Rosalie Iemhoff,et al.  On the admissible rules of intuitionistic propositional logic , 2001, Journal of Symbolic Logic.

[12]  Wojciech Dzik TRANSPARENT UNIFIERS IN MODAL LOGICS WITH SELF-CONJUGATE OPERATORS , 2006 .

[13]  Timothy Williamson Some admissible rules in nonnormal modal systems , 1993, Notre Dame J. Formal Log..

[14]  Frank van Harmelen,et al.  Handbook of Knowledge Representation , 2008, Handbook of Knowledge Representation.

[15]  Emil Jerábek,et al.  Admissible Rules of Modal Logics , 2005, J. Log. Comput..

[16]  Leonardo Manuel Cabrer,et al.  Simplicial geometry of unital lattice-ordered abelian groups , 2012, 1202.5947.

[17]  Alan Robinson,et al.  The Inverse Method , 2001, Handbook of Automated Reasoning.

[18]  Franz Baader,et al.  Unification theory , 1986, Decis. Support Syst..

[19]  Rosalie Iemho On the Admissible Rules of Intuitionistic Propositional Logic , 2008 .

[20]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[21]  Silvio Ghilardi,et al.  Unification in intuitionistic logic , 1999, Journal of Symbolic Logic.

[22]  Vladimir V. Rybakov,et al.  Admissibility of Logical Inference Rules , 2011 .

[23]  Luca Spada,et al.  Duality, projectivity, and unification in Łukasiewicz logic and MV-algebras , 2013, Ann. Pure Appl. Log..

[24]  D. Kirsh Foundations of Artificial Intelligence , 1991 .

[25]  Paliath Narendran,et al.  Unification of Concept Terms in Description Logics , 2001, Description Logics.

[26]  Frank Wolter,et al.  Undecidability of the unification and admissibility problems for modal and description logics , 2006, TOCL.

[27]  Silvio Ghilardi,et al.  Best Solving Modal Equations , 2000, Ann. Pure Appl. Log..

[28]  A. Chagrov,et al.  Modal Logic (Oxford Logic Guides, vol. 35) , 1997 .