On the Feasibility of Extrapolation of the Complex Electromagnetic Permittivity Function Using Kramers-Kronig Relations

We study the degree of reliability of extrapolation of complex electromagnetic permittivity functions based on their analyticity properties. Given two analytic functions, representing extrapolants of the same experimental data, we examine how much they can differ at an extrapolation point outside of the experimentally accessible frequency band. We give a sharp upper bound on the worst case extrapolation error, in terms of a solution of an integral equation of Fredholm type. We conjecture and give numerical evidence that this bound exhibits a power law precision deterioration as one moves further away from the frequency band containing measurement data.

[1]  S. W. MacDowell ANALYTIC PROPERTIES OF PARTIAL AMPLITUDES IN MESON-NUCLEON SCATTERING , 1959 .

[2]  Laurent Demanet,et al.  Stable Extrapolation of Analytic Functions , 2019, Found. Comput. Math..

[3]  V. Zakharyuta,et al.  Estimates of n-diameters of some classes of functions analytic on Riemann surfaces , 1976 .

[4]  The $n$-width of sets of analytic functions , 1980 .

[5]  R. M. Foster,et al.  Theorems regarding the driving-point impedance of two-mesh circuits , 1924 .

[6]  M. Kreĭn,et al.  The Markov Moment Problem and Extremal Problems , 1977 .

[7]  Ben Silver,et al.  Elements of the theory of elliptic functions , 1990 .

[8]  O. Brune Synthesis of a finite two-terminal network whose driving-point impedance is a prescribed function of frequency , 1931 .

[9]  J. Cooper MONOTONE MATRIX FUNCTIONS AND ANALYTIC CONTINUATION , 1976 .

[10]  H. Shapiro,et al.  Restriction operators, balayage and doubly orthogonal systems of analytic functions , 2003 .

[11]  Kramers Book Master Of Modern Physics The Scientific Contributions Of Ha Kramers , 2016 .

[12]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[13]  Explicit power laws in analytic continuation problems via reproducing kernel Hilbert spaces , 2019, Inverse Problems.

[14]  Lloyd N. Trefethen,et al.  Quantifying the ill-conditioning of analytic continuation , 2019, BIT Numerical Mathematics.

[15]  ASYMPTOTICS OF SINGULAR NUMBERS OF IMBEDDING OPERATORS FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS , 1982 .

[16]  Y. Grabovsky,et al.  Optimal Error Estimates for Analytic Continuation in the Upper Half‐Plane , 2018, Communications on Pure and Applied Mathematics.

[17]  M. Kreĭn,et al.  The Markov moment problem and extremal problems : ideas and problems of P.L. Čebyšev and A.A. Markov and their further development , 1977 .

[18]  R. Kronig On the Theory of Dispersion of X-Rays , 1926 .

[19]  Christel Hohenegger,et al.  Spectral measure computations for composite materials , 2015 .

[20]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[21]  R. Cutkosky,et al.  Optimized polynomial expansion for scattering amplitudes , 1968 .

[22]  Elena Cherkaev,et al.  Inverse homogenization for evaluation of effective properties of a mixture , 2001 .

[23]  Alex Townsend,et al.  On the Singular Values of Matrices with Displacement Structure , 2016, SIAM J. Matrix Anal. Appl..

[24]  K. Miller Least Squares Methods for Ill-Posed Problems with a Prescribed Bound , 1970 .

[25]  Paul Koosis,et al.  Introduction to Hp Spaces , 1999 .

[26]  S. Ciulli A stable and convergent extrapolation procedure for the scattering amplitude.—I , 1969 .

[27]  I. Caprini Integral equations for the analytic extrapolation of scattering amplitudes with positivity constraints , 1979 .

[28]  David J. Bergman,et al.  The dielectric constant of a composite material—A problem in classical physics , 1978 .

[29]  Stephen D. Fisher Function theory on planar domains : a second course in complex analysis , 2007 .

[30]  W. Donoghue Monotone Matrix Functions and Analytic Continuation , 1974 .

[31]  F. Gesztesy,et al.  On Matrix–Valued Herglotz Functions , 1997, funct-an/9712004.

[32]  John N. Warfield,et al.  Synthesis of linear communication networks , 1958 .

[33]  Robert Lipton,et al.  Optimal Inequalities for Gradients of Solutions of Elliptic Equations Occurring in Two-Phase Heat Conductors , 2001, SIAM J. Math. Anal..

[34]  T. Hughes,et al.  Signals and systems , 2006, Genome Biology.

[35]  S. Mandelstam DETERMINATION OF THE PION-NUCLEON SCATTERING AMPLITUDE FROM DISPERSION RELATIONS AND UNITARITY. GENERAL THEORY , 1958 .

[36]  Graeme W. Milton,et al.  Bounds on the complex dielectric constant of a composite material , 1980 .

[37]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[38]  V. Paulsen,et al.  An Introduction to the Theory of Reproducing Kernel Hilbert Spaces , 2016 .

[39]  V. Erokhin BEST LINEAR APPROXIMATIONS OF FUNCTIONS ANALYTICALLY CONTINUABLE FROM A GIVEN CONTINUUM INTO A GIVEN REGION , 1968 .

[40]  G. Ghirardi,et al.  CORRESPONDENCE BETWEEN UNSTABLE PARTICLES AND POLES IN S-MATRIX THEORY. , 1968 .

[41]  N. Aronszajn,et al.  On exponential representations of analytic functions in the upper half-plane with positive imaginary part , 1956 .

[42]  Richard Phillips Feynman,et al.  Mainly Electromagnetism and Matter , 2011 .

[43]  M. Ou,et al.  Dehomogenization: reconstruction of moments of the spectral measure of the composite , 2008 .

[44]  On the best representation of scattering data by analytic functions inL2-norm with positivity constraints , 1974 .

[45]  W. C. Elmore The Transient Response of Damped Linear Networks with Particular Regard to Wideband Amplifiers , 1948 .