A finite volume method for the approximation of Maxwell's equations in two space dimensions on arbitrary meshes
暂无分享,去创建一个
[1] F. Hermeline,et al. Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes , 2003 .
[2] Bo-nan Jiang,et al. The Origin of Spurious Solutions in Computational Electromagnetics , 1996 .
[3] G. Mur. The fallacy of edge elements , 1998 .
[4] F. Hermeline. Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes , 2007 .
[5] Eric T. Chung,et al. Convergence Analysis of Fully Discrete Finite Volume Methods for Maxwell's Equations in Nonhomogeneous Media , 2005, SIAM J. Numer. Anal..
[6] Pascal Omnes,et al. A Discrete Duality Finite Volume Approach to Hodge Decomposition and div-curl Problems on Almost Arbitrary Two-Dimensional Meshes , 2007, SIAM J. Numer. Anal..
[7] Charles Pierre. Modélisation et simulation de l'activité électrique du coeur dans le thorax, analyse numérique et méthodes de volumes finis , 2005 .
[8] N. Madsen. Divergence preserving discrete surface integral methods for Maxwell's curl equations using non-orthogonal unstructured grids , 1995 .
[9] F. Boyer,et al. Discrete duality finite volume schemes for Leray−Lions−type elliptic problems on general 2D meshes , 2007 .
[10] Paul-Louis George,et al. Delaunay triangulation and meshing : application to finite elements , 1998 .
[11] Vijaya Shankar,et al. Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure , 1991 .
[12] Serge Piperno,et al. L 2 -STABILITY OF THE UPWIND FIRST ORDER FINITE VOLUME SCHEME FOR THE MAXWELL EQUATIONS IN TWO AND THREE DIMENSIONS ON ARBITRARY UNSTRUCTURED MESHES , 2000 .
[13] F. Hermeline,et al. A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes , 2000 .
[14] J. Dicello,et al. Three dimensional finite difference frequency domain scattering computation using the Control Region Approximation , 1989 .
[15] Pierre Degond,et al. On a finite-element method for solving the three-dimensional Maxwell equations , 1993 .
[16] Franck Assous,et al. Time-dependent Maxwell's equations with charges in singular geometries , 2006 .
[17] Patrick Lacoste. La condensation de la matrice masse, ou mass-lumping, pour les éléments finis mixtes de Raviart-Thomas-Nédélec d ordre 1 , 2004 .
[18] W. Rachowicz,et al. An hp‐adaptive finite element method for scattering problems in computational electromagnetics , 2005 .
[19] C. Schwab,et al. EXPONENTIAL CONVERGENCE OF hp-FEM FOR MAXWELL EQUATIONS WITH WEIGHTED REGULARIZATION IN POLYGONAL DOMAINS , 2005 .
[20] Claus-Dieter Munz,et al. A three-dimensional finite-volume solver for the Maxwell equations with divergence cleaning on unstructured meshes , 2000 .
[21] Said Raghay,et al. Finite volumes for complex applications IV , 2005 .
[22] L. Fezoui,et al. Discontinuous Galerkin time‐domain solution of Maxwell's equations on locally‐refined nonconforming Cartesian grids , 2005 .
[23] A. Bossavit. Discretization of Electromagnetic Problems: The “Generalized Finite Differences” Approach , 2005 .
[24] Richard W. Ziolkowski,et al. Numerical solution of Maxwell's equations in the time domain using irregular nonorthogonal grids , 1988 .
[25] K. Domelevo,et al. Discrete-Duality Finite Volume Method for Second Order Elliptic Problems , 2005 .
[26] Ilaria Perugia,et al. Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator , 2005 .
[27] Patrick Joly,et al. A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part II: Analysis , 2003, Numerische Mathematik.
[28] Richard S. Falk,et al. Explicit Finite Element Methods for Symmetric Hyperbolic Equations , 1999 .
[29] M. Remaki. A new finite volume scheme for solving Maxwell’s system , 2000 .
[30] G. Mur,et al. Compatibility relations and the finite-element formulation of electromagnetic field problems , 1993 .
[31] Roy A. Nicolaides,et al. Convergence analysis of a covolume scheme for Maxwell's equations in three dimensions , 1998, Math. Comput..
[32] Claus-Dieter Munz,et al. Maxwell's equations when the charge conservation is not satisfied , 1999 .
[33] Peter Monk,et al. A Discontinuous Galerkin Method for Linear Symmetric Hyperbolic Systems in Inhomogeneous Media , 2005, J. Sci. Comput..
[34] Loula Fezoui,et al. A Parallel Time-Domain Maxwell Solver Using Upwind Schemes and Triangular Meshes , 1993, IMPACT Comput. Sci. Eng..
[35] Mark Ainsworth,et al. Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes , 2001 .
[36] Leszek Demkowicz,et al. Projection-based interpolation and automatic hp-adaptivity for finite element discretizations of elliptic and maxwell problems , 2007 .
[37] J. Hesthaven,et al. Nodal high-order methods on unstructured grids , 2002 .
[38] Jan S. Hesthaven,et al. High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids , 2006, J. Comput. Phys..
[39] F. Hermeline,et al. A finite volume method for solving Maxwell equations in inhomogeneous media on arbitrary meshes , 2004 .
[40] Patrick Joly,et al. An Error Analysis of Conservative Space-Time Mesh Refinement Methods for the One-Dimensional Wave Equation , 2005, SIAM J. Numer. Anal..
[41] A. Buffa,et al. A Sliding Mesh-Mortar Method for Two Dimensional Eddy Currents Model for Electric Engines , 1999 .
[42] A. Taflove,et al. Finite-Difference Time-Domain Methods , 2005 .
[43] Franck Assous,et al. Numerical Solution to the Time-Dependent Maxwell Equations in Two-Dimensional Singular Domains , 2000 .
[44] J. Nédélec. A new family of mixed finite elements in ℝ3 , 1986 .
[45] Claus-Dieter Munz,et al. Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model , 2000 .
[46] K. Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .
[47] Franck Assous,et al. Characterization of the Singular Part of the Solution of Maxwell's Equations in a Polyhedral Domain , 1999 .
[48] Claire Chainais-Hillairet,et al. Discrete duality finite volume schemes for two‐dimensional drift‐diffusion and energy‐transport models , 2009 .
[49] Chi-Wang Shu,et al. Locally divergence-free discontinuous Galerkin methods for the Maxwell equations , 2004, Journal of Computational Physics.
[50] Patrick Joly,et al. A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part I: Construction , 2003, Numerische Mathematik.
[51] Pascal Omnes,et al. A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .
[52] Loula Fezoui,et al. A Nondiffusive Finite Volume Scheme for the Three-Dimensional Maxwell's Equations on Unstructured Meshes , 2002, SIAM J. Numer. Anal..
[53] Claus-Dieter Munz,et al. A Finite-Volume Method for the Maxwell Equations in the Time Domain , 2000, SIAM J. Sci. Comput..
[54] Claus-Dieter Munz,et al. A finite-volume method for the instationary Maxwell equations , 1996 .
[55] F. Hermeline,et al. Two Coupled Particle-Finite Volume Methods Using Delaunay-Voronoı Meshes for the Approximation of Vlasov-Poisson and Vlasov-Maxwell Equations , 1993 .
[56] Zhi J. Wang,et al. A FV-TD electromagnetic solver using adaptive Cartesian grids , 2002 .
[57] P. George,et al. Delaunay's mesh of a convex polyhedron in dimension d. application to arbitrary polyhedra , 1992 .
[58] Franck Assous,et al. Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method , 2003 .
[59] L. Fezoui,et al. Convergence and stability of a discontinuous galerkin time-domain method for the 3D heterogeneous maxwell equations on unstructured meshes , 2005 .
[60] François Hermeline,et al. Une méthode de volumes finis pour les équations elliptiques du second ordre , 1998 .
[61] F. BEN BELGACEM,et al. The Mortar Finite Element Method for 3D Maxwell Equations: First Results , 2001, SIAM J. Numer. Anal..
[62] P. Degond,et al. Numerical Approximation of the Maxwell Equations in Inhomogeneous Media by aP1Conforming Finite Element Method , 1996 .
[63] Patrick Ciarlet,et al. Continuous Galerkin methods for solving the time-dependent Maxwell equations in 3D geometries , 2007, J. Comput. Phys..