A finite volume method for the approximation of Maxwell's equations in two space dimensions on arbitrary meshes

A new finite volume method is presented for discretizing the two-dimensional Maxwell equations. This method may be seen as an extension of the covolume type methods to arbitrary, possibly non-conforming or even non-convex, n-sided polygonal meshes, thanks to an appropriate choice of degrees of freedom. An equivalent formulation of the scheme is given in terms of discrete differential operators obeying discrete duality principles. The main properties of the scheme are its energy conservation, its stability under a CFL-like condition, and the fact that it preserves Gauss' law and divergence free magnetic fields. Second-order convergence is demonstrated numerically on non-conforming and distorted meshes.

[1]  F. Hermeline,et al.  Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes , 2003 .

[2]  Bo-nan Jiang,et al.  The Origin of Spurious Solutions in Computational Electromagnetics , 1996 .

[3]  G. Mur The fallacy of edge elements , 1998 .

[4]  F. Hermeline Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes , 2007 .

[5]  Eric T. Chung,et al.  Convergence Analysis of Fully Discrete Finite Volume Methods for Maxwell's Equations in Nonhomogeneous Media , 2005, SIAM J. Numer. Anal..

[6]  Pascal Omnes,et al.  A Discrete Duality Finite Volume Approach to Hodge Decomposition and div-curl Problems on Almost Arbitrary Two-Dimensional Meshes , 2007, SIAM J. Numer. Anal..

[7]  Charles Pierre Modélisation et simulation de l'activité électrique du coeur dans le thorax, analyse numérique et méthodes de volumes finis , 2005 .

[8]  N. Madsen Divergence preserving discrete surface integral methods for Maxwell's curl equations using non-orthogonal unstructured grids , 1995 .

[9]  F. Boyer,et al.  Discrete duality finite volume schemes for Leray−Lions−type elliptic problems on general 2D meshes , 2007 .

[10]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[11]  Vijaya Shankar,et al.  Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure , 1991 .

[12]  Serge Piperno,et al.  L 2 -STABILITY OF THE UPWIND FIRST ORDER FINITE VOLUME SCHEME FOR THE MAXWELL EQUATIONS IN TWO AND THREE DIMENSIONS ON ARBITRARY UNSTRUCTURED MESHES , 2000 .

[13]  F. Hermeline,et al.  A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes , 2000 .

[14]  J. Dicello,et al.  Three dimensional finite difference frequency domain scattering computation using the Control Region Approximation , 1989 .

[15]  Pierre Degond,et al.  On a finite-element method for solving the three-dimensional Maxwell equations , 1993 .

[16]  Franck Assous,et al.  Time-dependent Maxwell's equations with charges in singular geometries , 2006 .

[17]  Patrick Lacoste La condensation de la matrice masse, ou mass-lumping, pour les éléments finis mixtes de Raviart-Thomas-Nédélec d ordre 1 , 2004 .

[18]  W. Rachowicz,et al.  An hp‐adaptive finite element method for scattering problems in computational electromagnetics , 2005 .

[19]  C. Schwab,et al.  EXPONENTIAL CONVERGENCE OF hp-FEM FOR MAXWELL EQUATIONS WITH WEIGHTED REGULARIZATION IN POLYGONAL DOMAINS , 2005 .

[20]  Claus-Dieter Munz,et al.  A three-dimensional finite-volume solver for the Maxwell equations with divergence cleaning on unstructured meshes , 2000 .

[21]  Said Raghay,et al.  Finite volumes for complex applications IV , 2005 .

[22]  L. Fezoui,et al.  Discontinuous Galerkin time‐domain solution of Maxwell's equations on locally‐refined nonconforming Cartesian grids , 2005 .

[23]  A. Bossavit Discretization of Electromagnetic Problems: The “Generalized Finite Differences” Approach , 2005 .

[24]  Richard W. Ziolkowski,et al.  Numerical solution of Maxwell's equations in the time domain using irregular nonorthogonal grids , 1988 .

[25]  K. Domelevo,et al.  Discrete-Duality Finite Volume Method for Second Order Elliptic Problems , 2005 .

[26]  Ilaria Perugia,et al.  Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator , 2005 .

[27]  Patrick Joly,et al.  A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part II: Analysis , 2003, Numerische Mathematik.

[28]  Richard S. Falk,et al.  Explicit Finite Element Methods for Symmetric Hyperbolic Equations , 1999 .

[29]  M. Remaki A new finite volume scheme for solving Maxwell’s system , 2000 .

[30]  G. Mur,et al.  Compatibility relations and the finite-element formulation of electromagnetic field problems , 1993 .

[31]  Roy A. Nicolaides,et al.  Convergence analysis of a covolume scheme for Maxwell's equations in three dimensions , 1998, Math. Comput..

[32]  Claus-Dieter Munz,et al.  Maxwell's equations when the charge conservation is not satisfied , 1999 .

[33]  Peter Monk,et al.  A Discontinuous Galerkin Method for Linear Symmetric Hyperbolic Systems in Inhomogeneous Media , 2005, J. Sci. Comput..

[34]  Loula Fezoui,et al.  A Parallel Time-Domain Maxwell Solver Using Upwind Schemes and Triangular Meshes , 1993, IMPACT Comput. Sci. Eng..

[35]  Mark Ainsworth,et al.  Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes , 2001 .

[36]  Leszek Demkowicz,et al.  Projection-based interpolation and automatic hp-adaptivity for finite element discretizations of elliptic and maxwell problems , 2007 .

[37]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[38]  Jan S. Hesthaven,et al.  High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids , 2006, J. Comput. Phys..

[39]  F. Hermeline,et al.  A finite volume method for solving Maxwell equations in inhomogeneous media on arbitrary meshes , 2004 .

[40]  Patrick Joly,et al.  An Error Analysis of Conservative Space-Time Mesh Refinement Methods for the One-Dimensional Wave Equation , 2005, SIAM J. Numer. Anal..

[41]  A. Buffa,et al.  A Sliding Mesh-Mortar Method for Two Dimensional Eddy Currents Model for Electric Engines , 1999 .

[42]  A. Taflove,et al.  Finite-Difference Time-Domain Methods , 2005 .

[43]  Franck Assous,et al.  Numerical Solution to the Time-Dependent Maxwell Equations in Two-Dimensional Singular Domains , 2000 .

[44]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[45]  Claus-Dieter Munz,et al.  Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model , 2000 .

[46]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[47]  Franck Assous,et al.  Characterization of the Singular Part of the Solution of Maxwell's Equations in a Polyhedral Domain , 1999 .

[48]  Claire Chainais-Hillairet,et al.  Discrete duality finite volume schemes for two‐dimensional drift‐diffusion and energy‐transport models , 2009 .

[49]  Chi-Wang Shu,et al.  Locally divergence-free discontinuous Galerkin methods for the Maxwell equations , 2004, Journal of Computational Physics.

[50]  Patrick Joly,et al.  A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part I: Construction , 2003, Numerische Mathematik.

[51]  Pascal Omnes,et al.  A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .

[52]  Loula Fezoui,et al.  A Nondiffusive Finite Volume Scheme for the Three-Dimensional Maxwell's Equations on Unstructured Meshes , 2002, SIAM J. Numer. Anal..

[53]  Claus-Dieter Munz,et al.  A Finite-Volume Method for the Maxwell Equations in the Time Domain , 2000, SIAM J. Sci. Comput..

[54]  Claus-Dieter Munz,et al.  A finite-volume method for the instationary Maxwell equations , 1996 .

[55]  F. Hermeline,et al.  Two Coupled Particle-Finite Volume Methods Using Delaunay-Voronoı Meshes for the Approximation of Vlasov-Poisson and Vlasov-Maxwell Equations , 1993 .

[56]  Zhi J. Wang,et al.  A FV-TD electromagnetic solver using adaptive Cartesian grids , 2002 .

[57]  P. George,et al.  Delaunay's mesh of a convex polyhedron in dimension d. application to arbitrary polyhedra , 1992 .

[58]  Franck Assous,et al.  Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method , 2003 .

[59]  L. Fezoui,et al.  Convergence and stability of a discontinuous galerkin time-domain method for the 3D heterogeneous maxwell equations on unstructured meshes , 2005 .

[60]  François Hermeline,et al.  Une méthode de volumes finis pour les équations elliptiques du second ordre , 1998 .

[61]  F. BEN BELGACEM,et al.  The Mortar Finite Element Method for 3D Maxwell Equations: First Results , 2001, SIAM J. Numer. Anal..

[62]  P. Degond,et al.  Numerical Approximation of the Maxwell Equations in Inhomogeneous Media by aP1Conforming Finite Element Method , 1996 .

[63]  Patrick Ciarlet,et al.  Continuous Galerkin methods for solving the time-dependent Maxwell equations in 3D geometries , 2007, J. Comput. Phys..