Resolving the thermal challenges for silicon microring resonator devices

Abstract Silicon microring resonators have been hailed for their potential use in next-generation optical interconnects. However, the functionality of silicon microring based devices suffer from susceptibility to thermal fluctuations that is often overlooked in their demonstrated results, but must be resolved for their future implementation in microelectronic applications. We survey the emerging efforts that have been put forth to resolve these thermal susceptibilities and provide a comprehensive discussion of their advantages and disadvantages.

[1]  Y. Kokubun,et al.  Athermal waveguides for temperature-independent lightwave devices , 1993, IEEE Photonics Technology Letters.

[2]  J. Michel,et al.  Stability of polymer-dielectric bi-layers for athermal silicon photonics. , 2012, Optics express.

[3]  A. P. Knights,et al.  Monitoring and Tuning Micro-Ring Properties Using Defect-Enhanced Silicon Photodiodes at 1550 nm , 2012, IEEE Photonics Technology Letters.

[4]  Ashok V. Krishnamoorthy,et al.  Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators , 2012 .

[5]  G. Lo,et al.  Towards athermal nanoplasmonic resonators based on Cu-Tio2-Si hybrid plasmonic waveguide , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[6]  Ying Zhang,et al.  CMOS-integrated high-speed MSM germanium waveguide photodetector. , 2010, Optics express.

[7]  D. Livshits,et al.  Cost-effective WDM optical interconnects enabled by quantum dot comb lasers , 2010, OPTO.

[8]  Michal Lipson,et al.  Performance guidelines for WDM interconnects based on silicon microring resonators , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[9]  A Adibi,et al.  A Temperature-Insensitive Third-Order Coupled-Resonator Filter for On-Chip Terabit/s Optical Interconnects , 2010, IEEE Photonics Technology Letters.

[10]  Keren Bergman,et al.  Microring resonance stabilization using thermal dithering , 2013, 2013 Optical Interconnects Conference.

[11]  CMOS-compatible titanium dioxide deposition for athermalization of silicon photonic waveguides , 2013, CLEO: 2013.

[12]  Trimming of Athermal Silicon Resonators , 2012 .

[13]  Geert Morthier,et al.  Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. , 2009, Optics express.

[14]  K. Bergman,et al.  10 Gb/s Error-Free Operation of All-Silicon Ion-Implanted-Waveguide Photodiodes at 1.55 $\mu{\rm m}$ , 2013, IEEE Photonics Technology Letters.

[15]  Juthika Basak,et al.  CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide. , 2013, Optics express.

[16]  M. S. Nawrocka,et al.  Tunable silicon microring resonator with wide free spectral range , 2006 .

[17]  A. Biberman,et al.  Automated wavelength recovery for microring resonators , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[18]  J. Michel,et al.  Athermal operation of silicon waveguides: spectral, second order and footprint dependencies. , 2010, Optics express.

[19]  Roberto R. Panepucci,et al.  4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators , 2008 .

[20]  Michael Hochberg,et al.  Linearity of silicon ring modulators for analog optical links. , 2012, Optics express.

[21]  Chen Sun,et al.  Addressing link-level design tradeoffs for integrated photonic interconnects , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[22]  Hong Liu,et al.  Silicon photonics for optical access networks , 2012, The 9th International Conference on Group IV Photonics (GFP).

[23]  J. Van Campenhout,et al.  Compact Thermally Tunable Silicon Racetrack Modulators Based on an Asymmetric Waveguide , 2013, IEEE Photonics Technology Letters.

[24]  M. Watts,et al.  Silicon microring modulator with integrated heater and temperature sensor for thermal control , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[25]  S. J. B. Yoo,et al.  Low-loss and high contrast silicon-on-insulator (SOI) arrayed waveguide grating , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[26]  C. L. Schow,et al.  Passive Photonics in an Unmodified CMOS Technology With No Post-Processing Required , 2013, IEEE Photonics Technology Letters.

[27]  J. Van Campenhout,et al.  Comparison of Silicon Ring Modulators With Interdigitated and Lateral p-n Junctions , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  Athermal silicon nitride ring resonator by photobleaching of Disperse Red 1-doped poly(methyl methacrylate) polymer. , 2012, Optics letters.

[29]  H. Thacker,et al.  Enhanced optical bistability from self-heating due to free carrier absorption in substrate removed silicon ring modulators. , 2012, Optics express.

[30]  T. Hänsch,et al.  Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity , 1980 .

[31]  S.J.B. Yoo,et al.  Athermalizing and Trimming of Slotted Silicon Microring Resonators With UV-Sensitive PMMA Upper-Cladding , 2009, IEEE Photonics Technology Letters.

[32]  F. Gan,et al.  Maximizing the Thermo-Optic Tuning Range of Silicon Photonic Structures , 2007, 2007 Photonics in Switching.

[33]  Michael R Watts,et al.  Adiabatic microring resonators. , 2010, Optics letters.

[34]  N. Feng,et al.  Low loss shallow-ridge silicon waveguides. , 2010, Optics express.

[35]  K. Bergman,et al.  Experimental characterization of the optical-power upper bound in a silicon microring modulator , 2012, 2012 Optical Interconnects Conference.

[36]  J. Cunningham,et al.  Thermally tunable silicon racetrack resonators with ultralow tuning power. , 2010, Optics express.

[37]  M. Lipson,et al.  Ultra-low capacitance and high speed germanium photodetectors on silicon. , 2009, Optics express.

[38]  M. Lipson,et al.  CMOS-compatible athermal silicon microring resonators. , 2009, Optics express.

[39]  H. Thacker,et al.  25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning. , 2011, Optics express.

[40]  M. Lipson,et al.  Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers. , 2010, Optics express.

[41]  Marco Fiorentino,et al.  A ring-resonator-based silicon photonics transceiver with bias-based wavelength stabilization and adaptive-power-sensitivity receiver , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[42]  Qianfan Xu,et al.  Characterization of a 4$\,\times\,$ 4 Gb/s Parallel Electronic Bus to WDM Optical Link Silicon Photonic Translator , 2007, IEEE Photonics Technology Letters.

[43]  Michal Lipson,et al.  Optical 4x4 hitless Silicon router for optical Networks-on-Chip (NoC): erratum , 2008 .

[44]  A. Poon,et al.  Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings. , 2008, Optics express.

[45]  N. Feng,et al.  Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. , 2010, Optics express.

[46]  Hao Xu,et al.  60 Gbit/s silicon modulators with enhanced electro-optical efficiency , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[47]  David L. Luck,et al.  Adiabatic Resonant Microrings (ARMs) with directly integrated thermal microphotonics , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[48]  Temperature insensitive racetrack resonators for near infrared applications , 2012, OFC/NFOEC.

[49]  Lin Yang,et al.  Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide. , 2009, Optics express.

[50]  A. Atabaki,et al.  Athermal Performance in Titania-Clad Microresonators on SOI , 2010 .

[51]  H. Thacker,et al.  Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices , 2011, IEEE Photonics Journal.

[52]  Vladimir Stojanovic,et al.  Scalable electrical-optical thermal simulator for multicores with optical interconnects , 2013, 2013 Optical Interconnects Conference.

[53]  K. Bergman,et al.  Silicon Photonic Microring Links for High-Bandwidth-Density, Low-Power Chip I/O , 2013, IEEE Micro.

[54]  Michal Lipson,et al.  Athermal silicon microring electro-optic modulator. , 2012, Optics letters.

[55]  S. J. B. Yoo,et al.  Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation , 2009 .

[56]  Ashok V. Krishnamoorthy,et al.  Computer Systems Based on Silicon Photonic Interconnects A proposed supercomputer-on-a-chip with optical interconnections between processing elements will require development of new lower-energy optical components and new circuit architectures that match electrical datapaths to complementary optical , 2009 .

[57]  L. Sekaric,et al.  Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. , 2007, Optics express.

[58]  F. Zhang,et al.  Comb-laser driven WDM for short reach silicon photonic based optical interconnection , 2012, The 9th International Conference on Group IV Photonics (GFP).

[59]  A. L. Lentine,et al.  Bit-Error-Rate Monitoring for Active Wavelength Control of Resonant Modulators , 2013, IEEE Micro.

[60]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[61]  M. Lipson,et al.  High-Performance Silicon-Nitride-Based Multiple-Wavelength Source , 2011, IEEE Photonics Technology Letters.

[62]  Ali Adibi,et al.  Athermal performance in high-Q polymer-clad silicon microdisk resonators. , 2010, Optics letters.

[63]  Gyungock Kim,et al.  Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer , 2007, Journal of Lightwave Technology.

[64]  A. L. Lentine,et al.  Integrated CMOS compatible low power 10Gbps silicon photonic heater-modulator , 2012, OFC/NFOEC.

[65]  M. Uenuma,et al.  Temperature-independent silicon waveguide optical filter. , 2009, Optics letters.

[66]  Xianshu Luo,et al.  High Efficiency Ring-Resonator Filter With NiSi Heater , 2012, IEEE Photonics Technology Letters.

[67]  M. Lipson,et al.  Wide temperature range operation of micrometer-scale silicon electro-optic modulators. , 2008, Optics letters.

[68]  K. Bergman,et al.  Thermal stabilization of a microring modulator using feedback control. , 2012, Optics express.

[69]  Xuezhe Zheng,et al.  Highly-efficient thermally-tuned resonant optical filters. , 2010, Optics express.

[70]  Andrew L. Starbuck,et al.  Integrated control of silicon-photonic micro-resonator wavelength via balanced homodyne locking , 2013, 2013 Optical Interconnects Conference.

[71]  Ciyuan Qiu,et al.  Wavelength tracking with thermally controlled silicon resonators. , 2011, Optics express.

[72]  Keren Bergman,et al.  Integrated thermal stabilization of a microring modulator , 2013 .

[73]  A. Biberman,et al.  Broadband Silicon Photonic Electrooptic Switch for Photonic Interconnection Networks , 2011, IEEE Photonics Technology Letters.

[74]  Qianfan Xu,et al.  Silicon microring resonators with 1.5-μm radius , 2008 .