The nuclear envelope and transcriptional control

[1]  Yvonne N Fondufe-Mittendorf,et al.  H2A.Z-Mediated Localization of Genes at the Nuclear Periphery Confers Epigenetic Memory of Previous Transcriptional State , 2007, PLoS biology.

[2]  Wendy A Bickmore,et al.  Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation , 2007, Development.

[3]  T. Cremer,et al.  Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions , 2007, Nature Reviews Genetics.

[4]  T. Straub,et al.  Dosage compensation: the beginning and end of generalization , 2007, Nature Reviews Genetics.

[5]  Francis S. Collins,et al.  Human laminopathies: nuclei gone genetically awry , 2006, Nature Reviews Genetics.

[6]  A. Akhtar,et al.  The right dose for every sex , 2006, Chromosoma.

[7]  Guennaelle Dieppois,et al.  Cotranscriptional Recruitment to the mRNA Export Receptor Mex67p Contributes to Nuclear Pore Anchoring of Activated Genes , 2006, Molecular and Cellular Biology.

[8]  M. Rosbash,et al.  3′‐end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation , 2006, The EMBO journal.

[9]  M. Fornerod,et al.  Characterization of the Drosophila melanogaster genome at the nuclear lamina , 2006, Nature Genetics.

[10]  Elizabeth J. Tran,et al.  Dynamic Nuclear Pore Complexes: Life on the Edge , 2006, Cell.

[11]  F. Hediger,et al.  Nuclear pore association confers optimal expression levels for an inducible yeast gene , 2006, Nature.

[12]  Jean-Christophe Olivo-Marin,et al.  SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope , 2006, Nature.

[13]  F. Collins,et al.  Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[14]  S. Grewal,et al.  A Role for TFIIIC Transcription Factor Complex in Genome Organization , 2006, Cell.

[15]  A. Donaldson,et al.  The Ctf18 RFC‐like complex positions yeast telomeres but does not specify their replication time , 2006, The EMBO journal.

[16]  M. Lercher,et al.  X-chromosome-wide profiling of MSL-1 distribution and dosage compensation in Drosophila. , 2006, Genes & development.

[17]  Peter J Park,et al.  High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. , 2006, Genes & development.

[18]  B. van Steensel,et al.  Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex. , 2006, Genes & development.

[19]  Malgorzata Schelder,et al.  Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. , 2006, Molecular cell.

[20]  U. K. Laemmli,et al.  Nup-PI: the nucleopore-promoter interaction of genes in yeast. , 2006, Molecular cell.

[21]  J. Maddocks,et al.  Measuring limits of telomere movement on nuclear envelope. , 2006, Biophysical journal.

[22]  H. Furuhashi,et al.  DNA supercoiling factor contributes to dosage compensation in Drosophila , 2004, Development.

[23]  Yun-Fai Chris Lau,et al.  Genetic Approach , 2006 .

[24]  Michael Hampsey,et al.  A role for the CPF 3'-end processing machinery in RNAP II-dependent gene looping. , 2005, Genes & development.

[25]  W. G. Kelly,et al.  Chromatin remodeling in dosage compensation. , 2005, Annual review of genetics.

[26]  Peter J Park,et al.  Global regulation of X chromosomal genes by the MSL complex in Drosophila melanogaster. , 2005, Genes & development.

[27]  G. Gilfillan,et al.  The Drosophila MSL complex activates the transcription of target genes. , 2005, Genes & development.

[28]  Michael Unser,et al.  Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics , 2005, IEEE Transactions on Image Processing.

[29]  U. Nehrbass,et al.  Quality control of messenger ribonucleoprotein particles in the nucleus and at the pore. , 2005, Current opinion in cell biology.

[30]  Pamela A Silver,et al.  Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. , 2005, Genes & development.

[31]  Wendy A Bickmore,et al.  Nuclear re-organisation of the Hoxb complex during mouse embryonic development , 2005, Development.

[32]  B. Andrews,et al.  Reverse recruitment: the Nup84 nuclear pore subcomplex mediates Rap1/Gcr1/Gcr2 transcriptional activation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Xiaolan Zhao,et al.  A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  T. Misteli,et al.  Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome , 2005, Nature Medicine.

[35]  Daniel Zenklusen,et al.  Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export , 2005, The EMBO journal.

[36]  Wendy A Bickmore,et al.  Chromatin organization in the mammalian nucleus. , 2005, International review of cytology.

[37]  B. Andrews,et al.  Reverse recruitment : The Nup 84 nuclear pore subcomplex mediates Rap 1 Gcr 1 Gcr 2 transcriptional activation , 2005 .

[38]  S. Gasser,et al.  Sir-Mediated Repression Can Occur Independently of Chromosomal and Subnuclear Contexts , 2004, Cell.

[39]  Florence Hediger,et al.  The function of nuclear architecture: a genetic approach. , 2004, Annual review of genetics.

[40]  Patrick Heun,et al.  Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  G. Blobel,et al.  Mlp-dependent anchorage and stabilization of a desumoylating enzyme is required to prevent clonal lethality , 2004, The Journal of cell biology.

[42]  H. Hieronymus,et al.  Genome-wide mRNA surveillance is coupled to mRNA export. , 2004, Genes & development.

[43]  P. Walter,et al.  Gene Recruitment of the Activated INO1 Locus to the Nuclear Membrane , 2004, PLoS biology.

[44]  Antonin Morillon,et al.  Gene loops juxtapose promoters and terminators in yeast , 2004, Nature Genetics.

[45]  F. J. Herrera,et al.  Molecular Biology: What Ubiquitin Can Do for Transcription , 2004, Current Biology.

[46]  Mark Groudine,et al.  Form follows function: The genomic organization of cellular differentiation. , 2004, Genes & development.

[47]  Yosef Gruenbaum,et al.  Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Nick Proudfoot,et al.  New perspectives on connecting messenger RNA 3' end formation to transcription. , 2004, Current opinion in cell biology.

[49]  W. Bickmore,et al.  Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. , 2004, Genes & development.

[50]  Pamela A. Silver,et al.  Genome-Wide Localization of the Nuclear Transport Machinery Couples Transcriptional Status and Nuclear Organization , 2004, Cell.

[51]  Florence Hediger,et al.  Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins , 2004, The EMBO journal.

[52]  Thomas Ried,et al.  From Silencing to Gene Expression Real-Time Analysis in Single Cells , 2004, Cell.

[53]  Mo Li,et al.  Nuclear location of a chromatin insulator in Drosophila melanogaster , 2004, Journal of Cell Science.

[54]  G. Felsenfeld,et al.  CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. , 2004, Molecular cell.

[55]  O. Gadal,et al.  Nuclear Retention of Unspliced mRNAs in Yeast Is Mediated by Perinuclear Mlp1 , 2004, Cell.

[56]  Oreto Antúnez,et al.  Sus1, a Functional Component of the SAGA Histone Acetylase Complex and the Nuclear Pore-Associated mRNA Export Machinery , 2004, Cell.

[57]  D. Spector,et al.  The dynamics of chromosome organization and gene regulation. , 2003, Annual review of biochemistry.

[58]  M. Gabut,et al.  Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. , 2003, Genes & development.

[59]  K. Wilson,et al.  MAN1 and emerin have overlapping function(s) essential for chromosome segregation and cell division in Caenorhabditis elegans , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[60]  M. Groudine,et al.  Controlling the double helix , 2003, Nature.

[61]  Susan M. Gasser,et al.  Live Imaging of Telomeres yKu and Sir Proteins Define Redundant Telomere-Anchoring Pathways in Yeast , 2002, Current Biology.

[62]  J. Lis,et al.  The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila , 2002, Nature.

[63]  Michael Litt,et al.  The insulation of genes from external enhancers and silencing chromatin , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[64]  R. Sternglanz,et al.  Esc1, a Nuclear Periphery Protein Required for Sir4-Based Plasmid Anchoring and Partitioning , 2002, Molecular and Cellular Biology.

[65]  Daniel Zenklusen,et al.  Stable mRNP Formation and Export Require Cotranscriptional Recruitment of the mRNA Export Factors Yra1p and Sub2p by Hpr1p , 2002, Molecular and Cellular Biology.

[66]  M. Rosbash,et al.  Interactions between mRNA Export Commitment, 3′-End Quality Control, and Nuclear Degradation , 2002, Molecular and Cellular Biology.

[67]  Tamás Fischer,et al.  The mRNA export machinery requires the novel Sac3p–Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores , 2002, The EMBO journal.

[68]  A. Furger,et al.  Promoter proximal splice sites enhance transcription. , 2002, Genes & development.

[69]  Florence Hediger,et al.  Myosin-like proteins 1 and 2 are not required for silencing or telomere anchoring, but act in the Tel1 pathway of telomere length control. , 2002, Journal of structural biology.

[70]  J. Sedat,et al.  The Dynamics of Homologous Chromosome Pairing during Male Drosophila Meiosis , 2002, Current Biology.

[71]  U. K. Laemmli,et al.  Chromatin Boundaries in Budding Yeast The Nuclear Pore Connection , 2002, Cell.

[72]  Kevin Struhl,et al.  TREX is a conserved complex coupling transcription with messenger RNA export , 2002, Nature.

[73]  Matthias Merkenschlager,et al.  Gene silencing, cell fate and nuclear organisation. , 2002, Current opinion in genetics & development.

[74]  S. Grewal,et al.  Heterochromatin: new possibilities for the inheritance of structure. , 2002, Current opinion in genetics & development.

[75]  Wendy A Bickmore,et al.  Chromatin Motion Is Constrained by Association with Nuclear Compartments in Human Cells , 2002, Current Biology.

[76]  J. Tamkun,et al.  Modulation of ISWI function by site‐specific histone acetylation , 2002, EMBO reports.

[77]  S. Gasser,et al.  Chromosome Dynamics in the Yeast Interphase Nucleus , 2001, Science.

[78]  T. Misteli The concept of self-organization in cellular architecture , 2001, The Journal of cell biology.

[79]  M. Rosbash,et al.  Quality control of mRNA 3′-end processing is linked to the nuclear exosome , 2001, Nature.

[80]  C. Allis,et al.  Linking Global Histone Acetylation to the Transcription Enhancement of X-chromosomal Genes in Drosophila Males* , 2001, The Journal of Biological Chemistry.

[81]  T. Cremer,et al.  Chromosome territories, nuclear architecture and gene regulation in mammalian cells , 2001, Nature Reviews Genetics.

[82]  R. Kamakaka,et al.  RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae , 2001, The EMBO journal.

[83]  S. Gasser,et al.  The Positioning and Dynamics of Origins of Replication in the Budding Yeast Nucleus , 2001, The Journal of cell biology.

[84]  V. Corces,et al.  A chromatin insulator determines the nuclear localization of DNA. , 2000, Molecular cell.

[85]  K. Johansen,et al.  Jil-1, a Chromosomal Kinase Implicated in Regulation of Chromatin Structure, Associates with the Male Specific Lethal (Msl) Dosage Compensation Complex , 2000, The Journal of cell biology.

[86]  M. Gartenberg The Sir proteins of Saccharomyces cerevisiae: mediators of transcriptional silencing and much more. , 2000, Current opinion in microbiology.

[87]  Carl Wu,et al.  The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. , 2000, Molecular cell.

[88]  Brian Burke,et al.  Loss of a-Type Lamin Expression Compromises Nuclear Envelope Integrity Leading to Muscular Dystrophy , 1999, The Journal of cell biology.

[89]  R. Sternglanz,et al.  Perinuclear localization of chromatin facilitates transcriptional silencing , 1998, Nature.

[90]  Josef Loidl,et al.  Yeast Nuclei Display Prominent Centromere Clustering That Is Reduced in Nondividing Cells and in Meiotic Prophase , 1998, The Journal of cell biology.

[91]  A. Murray,et al.  Interphase chromosomes undergo constrained diffusional motion in living cells , 1997, Current Biology.

[92]  J. Sedat,et al.  Deconstructing the nucleus: global architecture from local interactions. , 1997, Current opinion in genetics & development.

[93]  H. Scherthan,et al.  The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae , 1996, The Journal of cell biology.

[94]  E. Gilson,et al.  Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. , 1996, Genes & development.

[95]  E. Gilson,et al.  SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres , 1993, Cell.

[96]  David A. Agard,et al.  Interphase nuclear envelope lamins form a discontinuous network that interacts with only a fraction of the chromatin in the nuclear periphery , 1990, Cell.

[97]  D. Stacey Expression of a subgenomic retroviral messenger RNA , 1980, Cell.