(Bandit) Convex Optimization with Biased Noisy Gradient Oracles

Algorithms for bandit convex optimization and online learning often rely on constructing noisy gradient estimates, which are then used in appropriately adjusted first-order algorithms, replacing actual gradients. Depending on the properties of the function to be optimized and the nature of “noise” in the bandit feedback, the bias and variance of gradient estimates exhibit various tradeoffs. In this paper we propose a novel framework that replaces the specific gradient estimation methods with an abstract oracle. With the help of the new framework we unify previous works, reproducing their results in a clean and concise fashion, while, perhaps more importantly, the framework also allows us to formally show that to achieve the optimal root-n rate either the algorithms that use existing gradient estimators, or the proof techniques used to analyze them have to go beyond what exists today.

[1]  J. Kiefer,et al.  Stochastic Estimation of the Maximum of a Regression Function , 1952 .

[2]  N. Z. Shor Convergence rate of the gradient descent method with dilatation of the space , 1970 .

[3]  Andrew Chi-Chih Yao,et al.  Probabilistic computations: Toward a unified measure of complexity , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[4]  Harold J. Kushner,et al.  wchastic. approximation methods for constrained and unconstrained systems , 1978 .

[5]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[6]  Hung Chen Lower Rate of Convergence for Locating a Maximum of a Function , 1988 .

[7]  G. Rappl On Linear Convergence of a Class of Random Search Algorithms , 1989 .

[8]  J. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .

[9]  James C. Spall,et al.  A one-measurement form of simultaneous perturbation stochastic approximation , 1997, Autom..

[10]  J. Spall,et al.  Simulation-Based Optimization with Stochastic Approximation Using Common Random Numbers , 1999 .

[11]  Marc Teboulle,et al.  Mirror descent and nonlinear projected subgradient methods for convex optimization , 2003, Oper. Res. Lett..

[12]  Accelerated randomized stochastic optimization , 2003 .

[13]  Tim Hesterberg,et al.  Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control , 2004, Technometrics.

[14]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[15]  Adam Tauman Kalai,et al.  Online convex optimization in the bandit setting: gradient descent without a gradient , 2004, SODA '05.

[16]  Peter L. Bartlett,et al.  Adaptive Online Gradient Descent , 2007, NIPS.

[17]  Elad Hazan,et al.  Competing in the Dark: An Efficient Algorithm for Bandit Linear Optimization , 2008, COLT.

[18]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[19]  Alexandre d'Aspremont,et al.  Smooth Optimization with Approximate Gradient , 2005, SIAM J. Optim..

[20]  Alexander Shapiro,et al.  Stochastic Approximation approach to Stochastic Programming , 2013 .

[21]  M. Baes Estimate sequence methods: extensions and approximations , 2009 .

[22]  A. Juditsky,et al.  5 First-Order Methods for Nonsmooth Convex Large-Scale Optimization , I : General Purpose Methods , 2010 .

[23]  Lin Xiao,et al.  Optimal Algorithms for Online Convex Optimization with Multi-Point Bandit Feedback. , 2010, COLT 2010.

[24]  Sham M. Kakade,et al.  Stochastic Convex Optimization with Bandit Feedback , 2011, SIAM J. Optim..

[25]  Ambuj Tewari,et al.  Improved Regret Guarantees for Online Smooth Convex Optimization with Bandit Feedback , 2011, AISTATS.

[26]  Mark W. Schmidt,et al.  Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization , 2011, NIPS.

[27]  Shalabh Bhatnagar,et al.  Stochastic Recursive Algorithms for Optimization , 2012 .

[28]  Ohad Shamir,et al.  Optimal Distributed Online Prediction Using Mini-Batches , 2010, J. Mach. Learn. Res..

[29]  L. A. Prashanth,et al.  Stochastic Recursive Algorithms for Optimization: Simultaneous Perturbation Methods , 2012 .

[30]  Jean Honorio,et al.  Convergence Rates of Biased Stochastic Optimization for Learning Sparse Ising Models , 2012, ICML.

[31]  Ohad Shamir,et al.  On the Complexity of Bandit and Derivative-Free Stochastic Convex Optimization , 2012, COLT.

[32]  Mehrdad Mahdavi,et al.  Exploiting Smoothness in Statistical Learning, Sequential Prediction, and Stochastic Optimization , 2014, ArXiv.

[33]  P. Dvurechensky,et al.  Stochastic Intermediate Gradient Method for Convex Problems with Inexact Stochastic Oracle , 2014, 1411.2876.

[34]  Sébastien Bubeck,et al.  Theory of Convex Optimization for Machine Learning , 2014, ArXiv.

[35]  Elad Hazan,et al.  Bandit Convex Optimization: Towards Tight Bounds , 2014, NIPS.

[36]  Hariharan Narayanan,et al.  On Zeroth-Order Stochastic Convex Optimization via Random Walks , 2014, ArXiv.

[37]  Yurii Nesterov,et al.  First-order methods of smooth convex optimization with inexact oracle , 2013, Mathematical Programming.

[38]  Ronen Eldan,et al.  Bandit Smooth Convex Optimization: Improving the Bias-Variance Tradeoff , 2015, NIPS.

[39]  Sébastien Bubeck,et al.  Bandit Convex Optimization : √ T Regret in One Dimension , 2015 .

[40]  Martin J. Wainwright,et al.  Optimal Rates for Zero-Order Convex Optimization: The Power of Two Function Evaluations , 2013, IEEE Transactions on Information Theory.

[41]  Yuval Peres,et al.  Bandit Convex Optimization: \(\sqrt{T}\) Regret in One Dimension , 2015, COLT.

[42]  Mehryar Mohri,et al.  Optimistic Bandit Convex Optimization , 2016, NIPS.

[43]  Phillipp Meister,et al.  Stochastic Recursive Algorithms For Optimization Simultaneous Perturbation Methods , 2016 .

[44]  Sébastien Bubeck,et al.  Multi-scale exploration of convex functions and bandit convex optimization , 2015, COLT.

[45]  Yurii Nesterov,et al.  Random Gradient-Free Minimization of Convex Functions , 2015, Foundations of Computational Mathematics.