Auroral X‐ray emission at Jupiter: Depth effects

[1] Auroral X-ray emissions from Jupiter with a total power of about 1 GW have been observed by the Einstein Observatory, Roentgen satellite, Chandra X-ray Observatory, and XMM-Newton. Previous theoretical studies have shown that precipitating energetic sulfur and oxygen ions can produce the observed X-rays. This study presents the results of a hybrid Monte Carlo (MC) model for sulfur and oxygen ion precipitation at high latitudes, looks at differences with the continuous slow-down model, and compares the results to synthetic spectra fitted to observations. We concentrate on the effects of altitude on the observed spectrum. The opacity of the atmosphere to the outgoing X-ray photons is found to be important for incident ion energies greater than about 1.2 MeV per nucleon for both sulfur and oxygen. Model spectra are calculated for intensities with and without any opacity effects. These synthetic spectra were compared with the results shown by Hui et al. (2010) which fit Chandra X-ray Observatory observations for the north and south Jovian auroral emissions. Quenching of long-lived excited states of the oxygen ions is found to be important. Opacity considerably diminishes the outgoing X-ray intensity calculated, particularly when the viewing geometry is not favorable.

[1]  C. Lisse,et al.  Comparative analysis and variability of the Jovian X‐ray spectra detected by the Chandra and XMM‐Newton observatories , 2010 .

[2]  C. Lisse,et al.  THE ION-INDUCED CHARGE-EXCHANGE X-RAY EMISSION OF THE JOVIAN AURORAS: MAGNETOSPHERIC OR SOLAR WIND ORIGIN? , 2009, 0907.1672.

[3]  A. Bhardwaj,et al.  Modeling spectra of the north and south Jovian X‐ray auroras , 2008 .

[4]  P. Ford,et al.  Spectral morphology of the X‐ray emission from Jupiter's aurorae , 2008 .

[5]  India.,et al.  A study of Jupiter's aurorae with XMM-Newton , 2006, astro-ph/0611562.

[6]  P. Ford,et al.  Low‐ to middle‐latitude X‐ray emission from Jupiter , 2006 .

[7]  R. Elsner,et al.  X‐ray emission from the outer planets: Albedo for scattering and fluorescence of solar X rays , 2006 .

[8]  P. Stancil,et al.  Ion emission spectra in the Jovian X‐ray aurora , 2006 .

[9]  Tx,et al.  XMM-Newton observations of X-ray emission from Jupiter , 2005, astro-ph/0512249.

[10]  R. Elsner,et al.  Solar control on Jupiter's equatorial X‐ray emissions: 26–29 November 2003 XMM‐Newton observation , 2005, astro-ph/0504670.

[11]  Ronald F. Elsner,et al.  Simultaneous Chandra X ray, Hubble Space Telescope Ultraviolet, and Ulysses Radio Observations of Jupiter's Aurora , 2005 .

[12]  Philippe Zarka,et al.  Jupiter's Aurora , 2007 .

[13]  Emma J. Bunce,et al.  Jovian cusp processes: Implications for the polar aurora , 2004 .

[14]  UK,et al.  First observation of Jupiter by XMM-Newton , 2004, astro-ph/0406340.

[15]  S. Miller,et al.  Jupiter's thermosphere and ionosphere , 2004 .

[16]  B. Mauk,et al.  Implications of Jovian X‐ray emission for magnetosphere‐ionosphere coupling , 2003 .

[17]  D. L. Cooper,et al.  Electron capture in collisions of S4+ with helium , 2002 .

[18]  J. H. Waite,et al.  Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter , 2002, Nature.

[19]  J. H. Waite,et al.  A pulsating auroral X-ray hot spot on Jupiter , 2002, Nature.

[20]  A. Maurellis,et al.  Ionospheric Effects of Comet Shoemaker–Levy 9 Impacts with Jupiter , 2001 .

[21]  Andreas Schinner,et al.  An empirical approach to the stopping power of solids and gases for ions from , 2001 .

[22]  Denis Grodent,et al.  A self‐consistent model of the Jovian auroral thermal structure , 2001 .

[23]  D. L. Cooper,et al.  Electron capture in collisions of S4+ with atomic hydrogen , 2001 .

[24]  A. Bhardwaj,et al.  Auroral emissions of the giant planets , 2000 .

[25]  T. Cravens,et al.  Jovian X‐ray emission from solar X‐ray scattering , 2000 .

[26]  P. Stancil,et al.  Charge Transfer in Collisions of C+ with H and H+ with C , 1998 .

[27]  D. Schultz,et al.  Jovian X-Ray Aurora and Energetic Oxygen Ion Precipitation , 1999 .

[28]  A. Dalgarno,et al.  Electron Energy Deposition in a Gas Mixture of Atomic and Molecular Hydrogen and Helium , 1999 .

[29]  A. Dalgarno,et al.  X ray and EUV emission spectra of oxygen ions precipitating into the Jovian atmosphere , 1998 .

[30]  G. Bjoraker,et al.  Observations of CH4, C2H6, and C2H2 in the stratosphere of Jupiter. , 1996, Icarus.

[31]  Ethiraj Venkatapathy,et al.  Thermal Structure of Jupiter's Upper Atmosphere Derived from the Galileo Probe , 1997, Science.

[32]  P. Drossart,et al.  Equatorial X-ray Emissions: Implications for Jupiter's High Exospheric Temperatures , 1997, Science.

[33]  Frank S. Milos,et al.  Structure of the Atmosphere of Jupiter: Galileo Probe Measurements , 1996, Science.

[34]  Wolfgang L. Wiese,et al.  Atomic Transition Probabilities for Carbon, Nitrogen and Oxygen , 1996 .

[35]  J. Waite,et al.  Auroral oxygen precipitation at Jupiter , 1995 .

[36]  Christopher T. Chantler,et al.  Theoretical Form Factor, Attenuation, and Scattering Tabulation for Z=1–92 from E=1–10 eV to E=0.4–1.0 MeV , 1995 .

[37]  R. Elsner,et al.  ROSAT observations of the Jupiter aurora , 1994 .

[38]  R. P. Singhal,et al.  Energetic electron precipitation in Jupiter's upper atmosphere , 1992 .

[39]  D. D. Barbosa Heavy ion dynamics and auroral arc formation in the Jovian magnetosphere , 1992 .

[40]  J. Waite Comment on “Bremsstrahlung X rays from Jovian auroral electrons” by D. D. Barbosa , 1991 .

[41]  L. Toburen,et al.  Experimental and theoretical study of the electron spectra in 66. 7--350-keV/u C sup + +He collisions , 1990 .

[42]  Olson,et al.  Subshell electron capture in collisions of fully stripped ions with He and H2 at intermediate energies. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[43]  Olson,et al.  Electron removal from molecular hydrogen by fully stripped ions at intermediate energies. , 1989, Physical review. A, General physics.

[44]  J. Waite,et al.  The precipitation of energetic heavy ions into the upper atmosphere of Jupiter , 1988 .

[45]  R. Becker,et al.  Theoretical initial l dependence of ion-Rydberg-atom collision cross sections , 1984 .

[46]  J. D. Sullivan,et al.  The detection of X rays from Jupiter , 1983 .

[47]  N. Gehrels,et al.  Energetic oxygen and sulfur ions in the Jovian magnetosphere and their contribution to the auroral excitation , 1983 .

[48]  S. Atreya,et al.  Jupiter - Structure and composition of the upper atmosphere , 1981 .

[49]  J. Blamont,et al.  Extreme Ultraviolet Observations from Voyager 1 Encounter with Jupiter , 1979, Science.

[50]  A. Salop,et al.  Charge-transfer and impact-ionization cross sections for fully and partially stripped positive ions colliding with atomic hydrogen , 1977 .

[51]  J. Mcguire,et al.  Independent electron approximation for atomic scattering by heavy particles , 1977 .

[52]  J. Gersten Theory of collisional quenching of fast metastable ions , 1977 .

[53]  I. Percival,et al.  A generalized correspondence principle and proton-hydrogen collisions , 1966 .

[54]  I. Percival,et al.  Classical theory of charge transfer and ionization of hydrogen atoms by protons , 1966 .