Mereosemiotics: Parts and Signs

For descriptions of cognitive processes, including process models for research data provenance and simulation work‚ow metadata, a formal notation is developed on the basis of the foundational ontological paradigm of mereosemiotics, i.e., the combination of mereotopology with Peircean semiotics. To demonstrate the viability of the approach, this is applied to extend the pre-existing OWL ontology for a physicalistic interpretation of modelling and simulation – interoperability infrastructure (PIMS-II) by a modal rst-order logic axiomatization.

[1]  K. Jongsma,et al.  Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI , 2021, Journal of Medical Ethics.

[2]  Andrius Merkys,et al.  A posteriori metadata from automated provenance tracking: integration of AiiDA and TCOD , 2017, Journal of Cheminformatics.

[3]  Fumiaki Toyoshima,et al.  Natural necessity: An introductory guide for ontologists , 2020, Appl. Ontology.

[4]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[5]  H. Preisig,et al.  Ontologies In Computational Engineering , 2021 .

[6]  Justin Buchler LOGIC AS SEMIOTIC: THE THEORY OF SIGNS , 2014 .

[7]  Pascal Hitzler,et al.  Towards Association Rule-Based Complex Ontology Alignment , 2019, JIST.

[8]  Martin Horsch,et al.  Semantic interoperability Based on the European Materials and Modelling Ontology and its Ontological Paradigm: Mereosemiotics , 2020, 14th WCCM-ECCOMAS Congress.

[9]  Charles S. Peirce,et al.  Peirce on signs : writings on semiotic , 1991 .

[10]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[11]  Lars Vogt,et al.  Bona Fideness of Material Entities and Their Boundaries , 2019, Natural and Artifactual Objects in Contemporary Metaphysics.

[12]  A. Giordani,et al.  An Extensional Mereology for Structured Entities , 2020, Erkenntnis.

[13]  M. Williams Dretske on Epistemic Entitlement , 2000 .

[14]  B. Cornillie Modality , 2019, The SAGE Encyclopedia of Human Communication Sciences and Disorders.

[15]  Achille C. Varzi,et al.  Fiat and Bona Fide Boundaries , 2000 .

[16]  Heinz A. Preisig,et al.  From Process Graph to Process Simulation with Proper Model Documentation , 2018 .

[17]  Oscar R. Martí :Writings of Charles S. Peirce: A Chronological Edition , 2002 .

[18]  Laure Vieu,et al.  Toward a Geometry of Common Sense: A Semantics and a Complete Axiomatization of Mereotopology , 1995, IJCAI.

[19]  John McCarthy Modality, Si! Modal Logic, No! , 1997, Stud Logica.

[20]  Willard Van Orman Quine,et al.  Word and Object , 1960 .

[21]  Daniel Chandler,et al.  Semiotics: The Basics , 2001 .

[22]  Lars Vogt,et al.  Levels and building blocks—toward a domain granularity framework for the life sciences , 2019, Journal of Biomedical Semantics.

[23]  John G. STELL A Four-Dimensionalist Mereotopology , 2004 .

[24]  Susanne Arndt,et al.  Smart grid terminology development—crossing the boundaries of terminology standardization , 2015 .

[25]  Timothy Williamson,et al.  Modal Logic as Metaphysics , 2013 .

[26]  Charles S. Peirce,et al.  Some Consequences of Four Incapacities , 2016 .

[27]  Heinz A. Preisig,et al.  Application of an Ontology Based Process Model Construction Tool for Active Protective Coatings: Corrosion Inhibitor Release , 2021, JOWO.

[28]  John Symons,et al.  Epistemic Entitlements and the Practice of Computer Simulation , 2018, Minds and Machines.

[29]  Carita Paradis,et al.  Metonymization as a key mechanism in semantic change , 2008 .

[30]  Ian Horrocks,et al.  The Even More Irresistible SROIQ , 2006, KR.

[31]  Declan O'Sullivan,et al.  Benchmarking RDF Metadata Representations: Reification, Singleton Property and RDF* , 2021, 2021 IEEE 15th International Conference on Semantic Computing (ICSC).

[32]  John F. Sowa Signs and reality , 2015, Appl. Ontology.

[33]  K. Koslicki Ontological Dependence , 2018, Oxford Scholarship Online.

[34]  Daniele Toti,et al.  OSMO: Ontology for Simulation, Modelling, and Optimization , 2021, JOWO.

[35]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[36]  Philipp Neumann,et al.  Semantic interoperability and characterization of data provenance in computational molecular engineering , 2019, Journal of Chemical & Engineering Data.

[37]  Björn Schembera,et al.  Like a rainbow in the dark: metadata annotation for HPC applications in the age of dark data , 2021, The Journal of Supercomputing.

[38]  Uwe Küster,et al.  Reproducibility and the Concept of Numerical Solution , 2019, Minds and Machines.

[39]  Juan M. Durán,et al.  Grounds for Trust: Essential Epistemic Opacity and Computational Reliabilism , 2018, Minds and Machines.

[40]  Björn Schembera,et al.  The Genesis of EngMeta - A Metadata Model for Research Data in Computational Engineering , 2018, MTSR.

[41]  R. Jubb Logical and Epistemic Foundationalism About Grounding: The Triviality of Facts and Principles , 2009 .

[42]  Christoph Steinbeck,et al.  NFDI4Chem: Shaping a Digital and Cultural Change in Chemistry. , 2019, Angewandte Chemie.

[43]  Dorothea Iglezakis,et al.  EngMeta - Metadata for Computational Engineering , 2020, Int. J. Metadata Semant. Ontologies.

[44]  Roderick M. Chisholm,et al.  Person And Object , 1976 .

[45]  B. Hammond Ontology , 2004, Lawrence Booth’s Book of Visions.

[46]  Philippe Muller,et al.  Topological Spatio–Temporal Reasoning and Representation , 2002, Comput. Intell..

[47]  O. Deutschmann,et al.  A Unified Research Data Infrastructure for Catalysis Research – Challenges and Concepts , 2021 .

[48]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[49]  Hsing-chien Tsai Decidability of General Extensional Mereology , 2013, Stud Logica.

[50]  Potenzialerwartungen von Biotechnologien. Ein Modell zur Analyse von Konflikten um neue Technologien ͱ , 2015 .

[51]  M. Horsch,et al.  Data Technology in Materials Modelling , 2021 .

[52]  Anthony G. Cohn,et al.  Mereotopological Connection , 2003, J. Philos. Log..